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Abstract

We use newly collected individual-level hunger recall information from the China Fam-

ily Panel Survey to estimate the causal effect of undernourishment on later-life health.

We develop a Two-Sample Instrumental Variable (TSIV) estimator that can deal with

heterogeneous samples. We find a non-linear relationship between mortality rates, a

commonly used famine indicator, and the individual hunger experience. The non-

linearity in famine exposure may explain the variation in the famine’s effect on later

life health found in previous studies. We also find that exposure to famine-induced

hunger early in life leads to worse health among females fifty years later. This effect

is much larger than the reduced-form effect found in previous studies. For males, we

find no impact.

KeyVerbals: famine, hunger, developmental origins, two-sample instrumental variable

JEL: I12, J11, C21, C26
∗This version: Monday 14th June, 2021. Deng: NHH Norwegian School of Economics,

zichen.deng@nhh.no; Lindeboom: Vrije Universiteit Amsterdam, Centre for Health Economics, Monash Uni-
versity, Tinbergen Institute and IZA Bonn, m.lindeboom@vu.nl. We gratefully acknowledge the valuable
comments from the co-editor and three anonymous reviewers.



1 Introduction

A large number of observational studies have demonstrated that health and economic dispar-

ities may have roots early in life. This relationship has been shown in studies that examine

the association between birth weight and later-life health and socioeconomic outcomes, as

well as from studies that use “natural experiments” that cause some individuals (the treated)

to be more likely to be affected by adverse conditions than others (the controls). In natural

experiments, researchers mostly use contextual factors at an aggregate level to proxy for

individual circumstances early in life. Examples of natural experiments include epidemics

(Almond, 2006), economic conditions (Van den Berg, Lindeboom, and Portrait, 2006) and

famines (Chen and Zhou, 2007; Lumey, Stein, and Susser, 2011). This paper adds to this

literature by looking at the long-run consequences of actual exposure to hunger early in life.

In empirical applications, there are often limits to using aggregate indicators as a proxy

for individual conditions. First, being born when the event in question took place is not

equivalent to actually being exposed to adverse conditions. For example, researchers have

used famine in a region as a proxy for being exposed to hunger. However, living in a food-

deprived area is not equivalent to actually experiencing hunger, even if the famine’s timing

and location are precisely known. Wealthier households may still have sufficient food, or some

parts of an exposed area may be less affected by the famine. Also, there is often uncertainty

about the location and timing of the famine. For instance, the famine may be preceded by a

prolonged period of food insecurity, so it is not always clear when the famine started. Most

studies rely on historical evidence about the famine’s evolution, and in some cases (such as

the Chinese Famine), there may be conflicting information from historical sources. In these

cases, researchers have limited information to justify the choices underlying their empirical

approach, how they define the “treatment” period, which famine indicator they use, or the

functional form of the parametric model. Without information on actual exposure among

the survivors, the estimates are, at best, attenuated intention-to-treat (ITT) effects, but

they may be biased.
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One solution is to use more granular data about hunger prevalence, such as excess mor-

tality rates or food prices. But these may also be imperfect proxies for the nutritional

environment, since they may not include informal trade systems or other contextual factors

that affect mortality rates and exaggerate (or attenuate) the intensity of the famine. The

other alternative is to use actual hunger experience. Recently, this information has become

available in a few data sets, such as The Survey of Health, Ageing and Retirement in Europe

(SHARE) and the Chinese Family Panel Survey (CFPS). These data resolve uncertainty

about the precision of famine proxies and may aid in providing causal evidence about the

treatment effect of actual hunger exposure on later life outcomes. The data richness is a

significant advantage when studying the long-run impacts of early childhood conditions. In

this paper, we use hunger recall information to estimate the effect of undernourishment early

in life on health, measured by the Metabolic Syndrome Index (Hoynes, Schanzenbach, and

Almond, 2016). We develop a Two-Sample Instrumental Variable (TSIV) method that re-

laxes the homogeneity assumption in standard TSIV methods and can deal with two samples

from different populations.

In a recent paper, Van den Berg, Pinger, and Schoch (2016) developed a TSIV approach

to examine the causal effect of early-life hunger exposure on later life health outcomes among

SHARE respondents from 3 European countries. They estimate the strength of the asso-

ciation between the famine and actual hunger, and the effect of hunger on height. Hunger

recall information is also imperfect because those experiencing hunger at very early ages

have much less hunger recall than respondents who were older during the famine. To avoid

this problem, Van den Berg, Pinger, and Schoch (2016) use another sample of older siblings

with more reliable hunger recall information to measure the association between the famine

and hunger experience.

The idea of combining two samples can be traced back to Angrist and Krueger (1992)

and was further developed in Inoue and Solon (2010). Two-sample methods implicitly as-

sume homogeneity between the two samples. However, this homogeneity assumption may
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not always be satisfied in practice. For instance, in a study on intergenerational income mo-

bility Björklund and Jäntti (1997) use independent samples of fathers and sons. Likewise,

Currie and Yelowitz (2000) look at the effect of public housing participation on housing

quality and educational attainment of children and combine information from CPS on pro-

gram participation with census data on outcomes. In both applications the sample moments

of the common variables differ significantly across the two data sets being combined. In

our context, very young children are, in general, frailer than older children, adolescents and

prime aged adults. Therefore, very young children surviving a famine are more likely to have

better biological traits or to come from more affluent families than their older counterparts.

As a consequence, for the primary sample of those who are exposed early in life, the dis-

tribution of observed and unobserved confounding factors, is likely to be different from the

distribution in the second (auxiliary) sample of older individuals. If there is heterogeneity

in confounding factors, our estimates of the causal effect will be biased when the parametric

model is misspecified.

Van den Berg, Pinger, and Schoch (2016) solve this by using discrete instruments and

covariates and stratifying the samples into a finite set of homogeneous subsamples. When

the famine’s start and end are not precise, or if there is substantial variation in the famine’s

intensity across regions, one may want to rely on continuous instruments such as excess

mortality rates or prices. Researchers would prefer a method that accommodates continuous

instruments and covariates.

To combine information from two different samples in a robust way, we propose a two-

step approach. In the first step, we use a non-parametric method to balance the primary and

the auxiliary sample. In the second step, we apply a two-sample IV method. The first step

decreases the model dependency on functional forms of the parametric causal inference in the

second step. We show that the estimator in the matched sample yields unbiased estimates of

the analogous regression coefficients in the population of the primary sample. Importantly,

our results are valid for continuous treatment variables and continuous instruments. Monte

4



Carlo simulations show that all estimators perform well in terms of bias when the first

stage is correctly specified. In this scenario, traditional two-sample estimators (TSIV and

TSTSLS) perform much better on efficiency. The two-step two-sample estimator proposed

here performs much better than the other estimators when the first stage is misspecified.

Using the two-step method, we reexamine the long-run health impact of the Great Chi-

nese Famine. The Great Chinese Famine has been studied extensively. Early studies (Chen

and Zhou, 2007; Almond, Edlund, Li, and Zhang, 2010) documented substantial effects on

height, wealth, and cognitive function in later life. On the other hand, there are also studies

that find no effects (see e.g. Kim, Fleisher, and Sun (2017), Meng and Qian (2009) and Xu,

Li, Zhang, and Liu (2016)). These differences may be the result of different studies exploit-

ing different historical sources and using different instruments. We focus on individuals born

during or shortly before the famine (1957–1962). Unlike previous Chinese famine studies, we

use hunger recall information and supplement the primary data set with a second sample of

much older individuals born between 1910 and 1947. For these older cohorts, hunger recall

error biases are less of a problem. We use this second (auxiliary) sample to estimate the

effect of famine exposure on the probability of reporting hunger.

We use nearest-neighbor matching to homogenize the distributions of covariates in the

two samples and examine the relationship between famine exposure and the probability of

reporting hunger. Virtually all previous papers estimate reduced form relationships between

later life health and famine indicators, thereby implicitly assuming a linear relationship be-

tween famine indicators and actual hunger exposure among the survivors. We find that

the linear approximation for the first stage does not fit the data and requires a logarithmic

transformation of excess mortality rates (EDR) to make the relationship linear. The non-

linear relationship between EDR and hunger experiences has consequences for the previous

contributions in the Chines Famine literature that estimated reduced-form models that were

linear in the instruments. Next, we estimate the impact of hunger on an index of metabolic

syndrome and find that early-life hunger for females leads to a 0.4 standard deviation in-
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crease in later life metabolic syndrome. This number is much larger than previous estimates

in the literature. For males, we find much smaller and insignificant effects.

Our analysis makes four important contributions to the literature on long-run effects. We

are the first study on the Chinese famine to provide evidence on the strength of the famine-

hunger association. Our first stage results also validate the commonly used instruments

in this literature to proxy undernourishment. We find a strong association between the

aggregate famine indicators and reported hunger experience. However, this association is

not a simple linear relationship. This nonlinearity might explain some of the conflicting

findings in the literature. Second, we adapt the standard two-sample instrumental variable

model to deal with heterogeneous samples. We propose using a non-parametric method to

process the data before the parametric econometric analyses. Monte Carlo simulations show

that estimates are less model-dependent when preprocessing balances the primary and the

auxiliary samples.

Third, we provide new evidence on the long-run impact of early-life hunger experiences.

All but one of the previous papers in this area used reduced-form approaches that include

famine indicators rather than actual hunger experience. They thus estimate intention-to-

treat (ITT) effects. We show that in the Chines famine, the causal treatment effects are much

larger than the intention-to-treat effects found in this literature. Finally, our paper discusses

the exclusion restriction required in IV famine studies. In our context, where we aim to assess

the effect of undernourishment and use hunger recall information, we have to assume that

the famine affects children only via hunger, and that there are no other channels. Although

the famine’s primary impact is food restriction, we cannot exclude other potential impacts

such as stress and/or infectious diseases that often accompany famines. Thus, it is likely

that the exclusion restriction is violated. Violations of the exclusion restriction are relevant

when interpreting reduced-form ITT estimates. We adopt a recently proposed exercise that

bounds the treatment effect under weaker assumptions (i.e., that relaxes the strict exclusion

restriction Conley, Hansen, and Rossi, 2012). Our bounding exercises shed light on the
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nutrition contribution of the famine’s impact relative to all other potential channels. We

conclude that our main results hold under much weaker assumptions.

The remainder of the paper is structured as follows. Section 2 briefly describes the histor-

ical background, institutional setting, and important features of the Great Chinese Famine.

In section 3, we describe the data sets we use in this study and discuss our malnutrition

indicator and our outcome variables. Section 4 introduces the framework, discusses identifi-

cation assumptions and presents the results from model simulations. In section 5 we apply

the method to estimate the causal effect of famine induced undernourishment early in life

on later life health.

2 Background and Prior Research

2.1 The Great Chinese Famine

The Great Chinese Famine occurred from 1958 to 1961 and is widely considered “the worst

famine in human history”. During the Famine, at least 16.5 million individuals perished in

rural areas (see Sen, 1981; Ravallion, 1997).

Since 1949, the central government adopted the Stalinist development model, which em-

phasized investment in industrial sectors. The rural sector had to provide resources for

investment and raw materials for production. To accommodate high investment in industry,

the government initiated a large scale land reform, followed by an aggressive collectiviza-

tion policy. During the land reform period (1950–52), redistribution of landlord-held land

and other property boosted agricultural production. Major indicators of productivity in the

rural sector, such as grain and cotton outputs, had double-digit growth rates during this

period. Collectivization of the rural sector followed immediately after this rapid growth

period. It started with the “Five-Year Plan” (1953–57), in which peasant households were

organized into agricultural producers’ cooperatives. This reform dramatically slowed agri-

cultural growth rates.
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On the eve of the famine, the central government in China controlled food production,

distribution, and consumption. Approximately 80% of the population worked in the agricul-

ture sector. Grain was harvested and stored communally, and private stores of grain were

prohibited. The central government procured grain produced in rural areas from communal

depots after the fall harvest. Procured grain was fed to urban workers, exported to other

countries in exchange for industrial equipment and expertise, and stored in reserves as insur-

ance against natural disasters. The grain retained by the rural regions was used to feed the

peasants in communal kitchens, which were established so that the collective could control

the preparation and consumption of food. Furthermore, the government prevented peasants

from migrating and, consequently, peasants could only consume the food distributed to their

collective.

There is a consensus in the literature that the Great Chinese Famine was a direct conse-

quence of Mao’s Great Leap Forward, an economic and social campaign led by the Chinese

Communist Party from 1958 to 1961 (Kung and Lin, 2003; Meng, Qian, and Yared, 2015).

During the campaign, the political climate encouraged provincial leaders to overstate grain

production and even export grain to signal the success of Mao’s Great Leap Forward (see

Meng, Qian, and Yared, 2015). Despite a severe shortage of food, China was a net grain

exporter in 1960 (Yao, 1999; Lin and Yang, 2000).

2.2 Relevant Features of the Famine

The famine lasted until 1962, but some researchers have argued (see Tan, Zhibo, and Zhang,

2015, for an example) that birth and death rates in some provinces had already returned to

normal levels by 1961. The precise end date for the famine is not clear for all provinces. With

hunger recall data from the CFPS, we can address this issue in more detail (see section 3).

The famine also featured considerable variation in severity across regions. In 1960 death

rates for two adjacent provinces could differ by more than five-fold. For instance, in 1960

the province of Anhui had a death rate of 1.84%, while the neighboring province of Jiangsu
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had a death rate of 0.29%.

Figure 1. Average and Spatial Variation in Famine Severity
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(a) Province-level mortality rates
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(b) County-level survivor birth cohort sizes
Notes: Figure 1a: The solid line plots mean mortality rates, which are average mor-
tality rates across provinces in each year. The dashed line is the standardized variance
in mortality rates across provinces in year t. Figure 1b: The solid line plots the de-
trended 1% size of the birth cohort born in year t. The dashed line is the normalized
cross-county variance in birth cohort sizes. Source: Meng, Qian, and Yared (2015)

To better depict the variation in severity across regions during the Great Chinese Famine,

we present some graphical evidence from Meng, Qian, and Yared (2015). Figure 1a plots

average mortality rates and the normalized variance in mortality rates over time (the cross-

province standard deviation divided by the cross-province mean). The figure shows that

during the famine (denoted by the two vertical lines), both mean mortality and the variance

in mortality rates spiked. Our empirical strategy exploits the variation in famine induced

mortality rates across provinces. Figure 1b provides complementary county-level evidence.

The figure plots mean and cross-county standardized variance in cohort size. This figure

shows a clear drop in cohort size and increased variance during the famine.

2.3 Selected Famine Studies

For an overview of famine studies, we refer to Van den Berg and Lindeboom (2018). Here we

highlight the results from the two most widely studied famines: the “Dutch Hunger Winter”

famine and the Chinese Famine. The Dutch Hunger Winter (December 1944–April 1945)
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famine is the most studied famine in the epidemiological and demographic literature. The

famine has a number of features that are advantageous for researchers: it arrived unexpect-

edly, lasted for a short period, and took place in a relatively stable society with thorough

data collection. Studies using this famine found effects on blood glucose levels, diabetes,

severe obesity, high blood pressure (hypertension), and schizophrenia (See Lumey, Stein,

and Susser (2011) for an excellent review). Scholte, van den Berg, and Lindeboom (2015)

find negative effects of the famine on labor market outcomes and hospitalization outcomes.

The Great Chinese Famine is the second most used famine in the literature on the long-

run effect of exposure early in life. Li and Lumey (2017) provide an extensive review and

meta-analysis of the medical and epidemiological research. They conclude that the litera-

ture has found effects for overweight, type 2 diabetes, hyperglycemia, metabolic syndrome,

and schizophrenia. However, most studies vary substantially in exposure definition, control

selection, and analytical methods. When controlling for these differences, they conclude

that “most effects commonly attributed to the famine can be explained by uncontrolled age

differences between exposed and control groups”. This is in line with Xu, Li, Zhang, and

Liu (2016), who find that estimates of the famine effects are sensitive to the choice of health

indicators, measures of famine severity, and regression model specifications. One of the

earliest economics papers (Chen and Zhou, 2007) finds substantive effects for height, labor

supply, and earnings. Their findings are confirmed by Meng and Qian (2009). Almond,

Edlund, Li, and Zhang (2010) look at the effect of famine exposure on literacy, labor market

status, wealth, and marriage market outcomes. They find that exposed women marry later

and have less educated spouses. They also find evidence for the Trivers-Willard hypothesis

that the sex-ratio of the offspring of exposed parents favors daughters. Few economic studies

target specific chronic conditions such as diabetes and hypertension. One exception is Kim,

Fleisher, and Sun (2017). They do not find effects on chronic diseases such as hypertension.
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3 Data

3.1 Hunger Recall

Our main data come from the China Family Panel Study (CFPS), a large-scale, nationally

representative panel survey conducted by the Institute of Social Science Survey at Peking

University. Currently, four waves are available, 2010, 2012, 2014, and 2016. The baseline

wave (hereafter CFPS-2010) is collected through a multistage probability sampling procedure

and consists of 14,798 households. All adults living in the household are interviewed, leading

to a total sample of 34,425 adult observations.

Similar to the SHARE survey, the CFPS-2010 survey included a question on hunger

recall. The survey asked: “Have you experienced starvation for more than one week? If

so, when did it start, when did it end1, and where did it happen?” Since the question only

requires the experience to last more than one week, we don’t know how many weeks in

total respondents have experienced food shortage in each year. Note that the Great Chinese

famine was not explicitly mentioned in the questionnaire. Therefore, respondents were not

primed towards a specific answer. The non-response rate for the hunger experience question

is very low (about 0.055). This is similar to the non-response rate in the SHARE survey.

Most of the hunger experiences happened during the Great Chinese Famine, which occurred

more than 50 years before the survey. Hunger responses related to the great Chinese famine

are likely to be subject to recall bias, especially for respondents born close to the famine.

Figure 2 supports this suspicion.

The figure displays the fraction of individuals in the raw data who report hunger as

a fraction of those who were alive during the famine period. The horizontal axis is the

respondent’s age in 1962; the vertical axis is the fraction of individuals who experienced

hunger during the famine (1958–1962). The fraction of hunger recall increases with age

during the famine and stabilizes at about 30 percent after age 12.2 We see no gender
1The public data only provides information at the year level.
2Several validation studies match recall data with actual outcomes and find that the recall data is reliable
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Figure 2. Probability of Reporting Hunger Conditional on Famine Exposure

Exposed
Sample

0

.1

.2

.3

.4

%
 R

ep
or

tin
g 

H
un

ge
r (

by
 g

en
de

r)

0 5 10 15 20 25 30 35
Age at 1962 (end of the famine)

Male
Female

Notes: The exposed sample includes individuals who were born between 1958–1962.

differences in reports of hunger during the famine period. Our primary sample contains

individuals born before and during the famine, whose own recall of malnutrition around

birth and in the first years of life is likely to suffer from significant recall bias. To overcome

this problem, we follow the idea introduced by Van den Berg, Pinger, and Schoch (2016) to

use recall information from individuals who experienced the famine at an older age to proxy

for actual hunger exposure for individuals in the primary sample.

3.2 The Primary and Auxiliary Sample and Summary Statistics

The primary sample includes individuals born between 1958 and 1962 and who lived in rural

areas. After dropping individuals with missing information on the outcome variable (see

below), we are left with 958 males and 972 females from 27 provinces. Very few people

migrated during the famine (Chen and Zhou, 2007). This is also true for our sample of

people living in rural China: only 4% live outside their province of birth at the time of

the interview. For the reported health outcome, we pool data sets from the first three

CFPS waves (CFPS-2010, CFPS-2012, and CFPS-2014).3 We look at three chronic diseases:

hypertension, diabetes, and obesity. The first two conditions are derived from the question

when individuals reach adult ages (see, for example, O’malley, Bachman, and Johnston (1983) on teen
drinking behavior).

3The fourth wave, CFPS-2016, does not collect information on some of the health conditions we need for
our health index (hypertension, diabetes, and height).
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“Has a doctor ever told you that you suffer from…”. Obesity is defined as a body mass index

(BMI) exceeding 29. We used self-reported height and weight to calculate BMI. We construct

a Metabolic Syndrome Index by grouping information on all three chronic conditions. The

index is the average of the standardized z-scores for each component. High values of the

index are associated with worse health.

To construct an auxiliary sample that is less susceptible to recall bias, we select females

born between 1910 and 1947, aged 15–52 in 1962. If the female in the auxiliary sample is the

mother of the individual in the primary sample, we include this observation as a proxy for

the individual’s hunger exposure. 10% of the matches are between the individual from the

primary sample and his/her mother. For the remaining individuals in the primary sample,

we match on the village of birth (or if not available, county of birth, or province of birth)

and next on age and literacy.

We report summary statistics for the primary and auxiliary samples in Table 1. Panel

A reports summary statistics in the primary sample for the main outcome and age and

literacy status for the individual’s mother. We report summary statistics for the health

outcomes collected in CFPS2010, CFPS-2012, and CPFS-2014 in Panel B. Panel C reports

summary statistics for the auxiliary sample (born between 1910 and 1947). We use the same

auxiliary sample for the male and female sub-samples. Comparing the primary sample with

the auxiliary sample, we see that mothers’ literacy rates in the primary sample are much

lower than mothers’ literacy rates in the auxiliary sample. We also see that mothers in the

auxiliary sample are about six years older than the mothers of individuals in the primary

sample. This invalidates classical two-sample IV methods. Below we present our two-sample

IV method that can be applied when the two samples have different distributions of observed

and unobserved characteristics.

13



Table 1. Summary Statistics

Female sample Male sample
Obs. Mean SD Obs. Mean SD

Panel A: Primary sample - basic information
Age at 2010 958 50.40 1.88 972 50.59 1.88
Mother literate 958 0.15 0.36 972 0.18 0.39
Mother birth year 958 1931.39 7.26 972 1931.03 7.67
Father literate 958 0.44 0.50 972 0.44 0.50
Father birth year 958 1928.53 7.72 972 1928.18 8.33
Panel B: Primary sample - health outcomes
Hypertension 2522 0.04 0.19 2618 0.02 0.15
Diabetes 2522 0.01 0.10 2618 0.01 0.09
Obesity 2522 0.04 0.21 2618 0.04 0.19
Metabolic syndrome(index) 2522 0.02 0.64 2618 -0.02 0.54
Panel C: Auxiliary sample
Mother literate 3682 0.24 0.43 3682 0.24 0.43
Mother birth year 3682 1925.88 15.58 3682 1925.88 15.58
Father literate 3682 0.47 0.50 3682 0.47 0.50
Father birth year 3682 1923.04 15.82 3682 1923.04 15.82

Notes: Author’s tabulations of CFPS-2010, CFPS-2012, and CFPS-2014. Panel A summarizes back-
ground information for individuals born in rural area between 1957 and 1962. Panel B pools chronic
conditions data from three waves of CFPS. The Metabolic Syndrome Index is the z-score from sub-
tracting the mean and dividing by the standard deviation. Both the mean and standard deviation are
calculated using the analysis sample (individuals born between 1957 and 1962 in all three waves of
CFPS). High values of the index are associated with worse health. Panel C displays the background
information in the auxiliary sample, which includes all individuals born prior to 1947.

4 Two-Sample IV Models with Heterogeneous Samples

4.1 Model

Many researchers have used data combination methods to identify the causal effect when no

single sample contains all relevant variables (see Ridder and Moffitt, 2007, for a review). Most

empirical applications of two-sample methods implicitly assume homogeneity between the

primary sample and the auxiliary sample. Table 1 in section 3 showed substantial differences

in age and literacy status between the (proxy) mothers in the primary and auxiliary samples.

Ignoring that these samples differ in important ways will result in first-stage estimates that
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are not relevant for the primary sample and thus irrelevant for the treatment effect in the

second stage (in the primary sample). We consider the following general framework:

Yi = ψ(Di, Xi, Ui), (1)

where Di denotes severe hunger during childhood for individual i, Yi denotes health in adult-

hood. Xi denotes a vector of observed covariates. We are interested in the causal effect of

hunger experiences in early life (D) on later-life outcomes (Y ). There are a number of chal-

lenges to identifying the causal effect: D is likely to be endogenous, and D is systematically

misreported or not in the same sample as Y . To solve the endogeneity problem, researchers

usually instrument D with a contextual factor (Z) and estimate the intention-to-treat (ITT)

effect. For instance, researchers have used being born in a famine-stricken area or excess

mortality rates in an area as an instrumental variable for undernourishment early in life.

When Z and D are in the same sample, the local average treatment effect can be es-

timated using two-stage least squares (TSLS) or Instrumental Variable (IV) techniques.

Mogstad, Torgovitsky, and Walters (2019) show that when Z is not a binary variable, the

TSLS estimator can be understood as a weighted local average treatment effect with some

additional monotonicity assumption. In practice, researchers often use a linear instrument-

exposure model. From Vansteelandt and Didelez (2018) and Buja, Brown, Berk, George,

Pitkin, Traskin, Zhang, and Zhao (2019), we know that the TSLS estimator is consistent

even when the relationship between the treatment and the instrument is misspecified.

With variables in two different samples, we can use the primary sample to estimate the

reduced-form equation and the auxiliary sample to estimate the first-stage equation. In our

study, we use the sample of children born during the famine to estimate the reduced-form

equation that relates Y to Z. The auxiliary sample of adults during the famine is used

to estimate the relationship between D to Z (the first-stage equation). Although TSLS is

robust to model misspecification in the one-sample setting, this robustness property does not
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carry over to the two-sample setting Angrist and Krueger (1992). As has been pointed out by

Graham, Pinto, and Egel (2016), early applications all (implicitly) assume that both samples

are random samples from the study population (i.e., the samples are “compatible”). When

the “compatible” assumption is not met, both TSIV and TSTSLS estimates are biased.

Our study uses children born during or shortly before the famine to estimate the reduced

form equation and people who were already adults to estimate the first-stage equation. The

mortality impact of a famine at very young ages is likely to be different from the mortality

impact at adult ages. Therefore, the famine will affect different cohorts differently, resulting

in differential mortality selection across different cohorts. Further, young children surviving

the famine are more likely to come from families with favorable biological traits and/or

(wealthier) families with better access to food. Table 1 showed that there were substantial

differences between the distribution of covariates in the primary sample and the auxiliary

sample. Two-sample estimates using the original (i.e., raw unbalanced) samples are therefore

biased.

Ho, Imai, King, and Stuart (2007) propose preprocessing the data with matching methods

to balance the treatment and control group to reduce the problem of model-dependent causal

estimates. Similarly, we adopt a two-step approach to address heterogeneous samples in two

sample settings. In the first step, we employ non-parametric preprocessing, such as nearest-

neighbor matching, to balance the covariate distributions between the primary sample and

the auxiliary sample. In the second step, we perform a parametric (or semi-parametric)

analysis using the primary sample and the matched individuals from the auxiliary sample.

The simplest way to understand our approach is to consider one-to-one-exact matching. This

matches each individual in the primary sample to a close match in the auxiliary sample. Af-

ter the matching procedure, the preprocessed auxiliary sample is balanced with the primary

sample, with any unmatched auxiliary units discarded. With all units in the primary sam-

ple matched, this procedure eliminates dependence on the functional form of a parametric

analysis in the second step. As a result, misspecification in the second step is less likely to
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be a source of bias. In Appendix A.1, we show that the proposed two-step estimator (in the

remainder referred to as the two-step-TSTSLS or two-step-TSIV) yields unbiased estimates

of the analogous regression coefficients in the population of the primary sample.

Graham, de Xavier Pinto, and Egel (2012); Graham, Pinto, and Egel (2016) develop a

method of Inverse Probability Tilting (IPT) that uses propensity score estimates, and next

apply a weighting estimator.4 The propensity score is then used to reweigh the auxiliary

sample. In this paper, we pursue an approach that uses matching as a preprocessing of

the data to balance the auxiliary and primary sample. It is well known that the matching

approach has the disadvantage that part of the data will not be used, which causes ineffi-

ciency. However, recent literature (see, for instance, Armstrong and Kolesár, 2021) argues

that matching is to be preferred when the conditional expectation function is not smooth

enough. In that case, putting positive weight on observations other than the closest in-

creases the bias too much, while one-to-one matching minimizes the bias. This observation

also echoes early simulation results from Busso, DiNardo, and McCrary (2014), who show

that matching methods outperform re-weighting when the overlap is sufficiently poor. The

theoretical justification of the trade-off between matching and weighting can also be found in

Hirshberg and Wager (2017); Kallus (2020). We don’t want to repeat these arguments. In-

stead, we perform simulations in the section below to show the advantage and disadvantages

of our estimator.

4.2 Monte Carlo Simulations

We performed two sets of Monte Carlo simulations to compare the performance of our two-

step-TSTSLS estimator with the TSIV, the TSTSLS, and the IPT estimator.5 Below we

provide the general findings of these simulations. More detail can be found in Appendix A.3.

In the first set of simulations, we vary the degree of overlap in the distribution of X in

the primary and auxiliary sample and, at the same time, vary the degree of misspecification
4Similar concepts have been developed and extended by other papers (Imai and Ratkovic, 2014).
5Simulations with a two-step-TSIV gave very similar results.
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in the first stage regression. The simulations show that all estimators perform well in terms

of bias when the first stage is correctly specified. In this secenario traditional estimators

(TSIV and TSTSLS) perform much better on efficiency. The two-step-TSTSLS estimator

does not use the information of all data points and therefore has much lower efficiency. The

two-step-TSTSLS performs much better than the other estimators when the first stage is

misspecified.

In the second set of simulations, we fix the overlap (we take it as poor) and vary the degree

of misspecification in the first stage equation. These simulations show that when we gradually

increase the degree of misspecification, the performance of the TSIV, the TSTSLS, and the

IPT estimators deteriorate quickly. The two-step-TSTSLS estimator performs relatively

well. The IV estimate can be understood as the ratio of the intention to treat estimate and

the first stage estimate. Therefore, misspecifications in the first-stage regression translate

into relatively large biases. Similarly, misspecifications in the first stage will increase the bias

of the TSTSLS. The simulation results show that the two-step-TSTSLS is robust against

misspecifications. We suggest that this method can be used as a robustness check in empirical

applications.

5 Reexamining the Long-run Effect of Undernourish-

ment using the Chinese Famine

In this section, we apply the method developed in the previous section to estimate the

causal effect of famine induced undernourishment early in life on later-life health. The Great

Chinese famine has been studied extensively. All studies use reduced form regressions that

relate the outcome variable Y to instruments Z. The findings of these studies are mixed

and largely due to differences in instruments Z, different data sets, different selections made

in the construction of the analysis sample, and different specifications for the reduced-form

regression (Li and Lumey (2017)).
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5.1 Nearest-Neighbor Matching

We use nearest-neighbor matching based on village of birth, mother’s age, and literacy to

balance the two samples. When village of birth information is not available, we match indi-

viduals on county of birth, ensuring that the matched pairs have similar family background

characteristics. Cao, Xu, and Zhang (2020) have documented that counties with large family

clans experienced lower mortality during the famine. Table 2 presents the balanced primary

and auxiliary samples after applying nearest-neighbor matching.6 As an out-of-sample test,

we also show summary statistics for two father’s characteristics, which the matching algo-

rithm does not target. The percentage of literate fathers is balanced between the primary

and auxiliary samples. Our matching algorithm significantly improves balance for the aver-

age age of the father. The mean age difference decreases from 5 to 1.5 after the matching

procedure. This improvement signals that the balance between the primary and auxiliary

samples has been improved substantially, even for variables we did not explicitly target.

Table 2. Summary Statistics – Matched Sample

Female sample Male sample
Obs. Mean SD Obs. Mean SD

Panel A: Matched primary sample
Age at 2010 956 50.40 1.88 970 50.59 1.88
Mother literate 956 0.15 0.36 970 0.18 0.39
Mother birth year 956 1931.37 7.26 970 1931.04 7.68
Father literate 956 0.44 0.50 970 0.44 0.50
Father birth year 956 1928.52 7.72 970 1928.18 8.33
Panel B: Matched auxiliary sample
Mother literate 956 0.12 0.33 970 0.16 0.37
Mother birth year 956 1930.63 9.60 970 1930.55 10.17
Father literate 956 0.42 0.49 970 0.38 0.49
Father birth year 956 1926.89 11.57 970 1926.74 11.76

Notes: Author’s tabulations of CFPS-2010. Panel A summarizes background information for individ-
uals in the matched primary sample. Panel B summarizes background information for individuals in
the matched auxiliary sample.

6For less than 5% of the individuals in the main sample we can’t find a match from the auxiliary sample.
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5.2 Results from Two-sample IV Models

In the second step, we set up a linear model, to approximate the true causal model (1):

Yi = γDi + πXi + Ui, (2)

where i indexes the individual. γ is the causal effect of hunger early in life on later-life

health, our parameter of interest. As the model has only one endogenous variable and one

instrumental variable, the estimates of γ consist of two components: the reduced-form (or

ITT) estimates (3)

Yi = γ0Zi + π0Xi +Wi; (3)

and, when hunger experience information (Di) is available, the first stage regression (4)

Di = γ1Zi + π1Xi + Vi. (4)

The excess mortality (death) rate (EDR) is commonly used as a famine intensity measure

in studies of the great Chinese famine (Chen and Zhou, 2007; Almond, Edlund, Li, and

Zhang, 2010). Other studies (for instance, Bleakley (2007)) use it as a measure of disease

prevalence. We take province-level mortality rates from Meng, Qian, and Yared (2015) and

construct our instrumental variable (i.e., the excess death rate in 1960) following Chen and

Zhou (2007). We define the excess death rate in 1960 as the gap between the death rate in

1960 and the average death rate in the three years before 1959.

We first check that our instrument is relevant for the excess mortality rate. Figure 3a

presents a binned scatter plot of the relationship between hunger experiences and excess

mortality rates. The points on the figure plot the percentage of respondents who had hunger

experiences during the famine. Interestingly, a linear relation, which is implicitly assumed

by most famine studies, does not do a good job capturing the relationship between EDR

and hunger. The percentage of individuals who reported any hunger experience remains
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Figure 3. Mean Hunger Experiences versus EDR/log(EDR)
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(a) Mean Hunger Experiences vs. EDR
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(b) Mean Hunger Experiences vs. log(EDR)
Notes: Figure 3a and 3b present two binned scatter plots of the relationship between
the percentage of respondents who had hunger experiences during the famine and excess
mortality rates in 1960. The excess death rate (EDR) in 1960 is the gap between the
death rate in 1960 and the average death rate in the three years before 1959. Figure 3a
uses raw excess mortality rates, while Figure 3b uses the log-transformation of excess
mortality rates. The points on the figure plot the mean hunger experiences within each
EDR/log(EDR) percentile bin. The best-fit line is estimated using an OLS regression
on the underlying micro data. F-statistics for both regressions are reported separately.

more or less stable at 40% for excess mortality rates above about 15. This implies that,

for high excess mortality rates, the instrument is no longer informative for actual hunger

exposure. Indeed, the associated F-statistics of the linear regression is 7.42, suggesting that

the (linear) EDR is a weak instrument. This may explain why studies that restrict their

analysis to provinces with high mortality rates generally find small effects.7

An arbitrary solution would be to restrict the sample by leaving out provinces with

extremely high mortality rates. However, this will considerably decrease the sample size

and may generate selection bias, since the marginal survivor at high mortality rates will

differ from the marginal survivor at lower mortality rates. Instead, we decided to take

a log-transformation of excess mortality rates in the province where the individual lived

(log(EDR)). Figure 3b shows that the relation between hunger experiences and the log(EDR)

can be captured well by a linear function. The associated F-statistic for the regression is

well above 10. The log-transformation is simple and convenient, but has the disadvantage of
7A large proportion (7/10) of regional studies surveyed in Li and Lumey (2017), which look at high

mortality areas, finds insignificant impacts.
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the functional form restriction. Therefore, we also used a more flexible specification (a set

of EDR quartile dummies). We report these results in section 5.4.

Table 3. First-stage – the Effect of Famine Intensity on Hunger

(1) (2) (3) (4) (5) (6)
Hunger

All All Female Female Male Male

log(EDR) 0.075*** 0.074*** 0.087*** 0.086*** 0.062** 0.062**
(0.015) (0.015) (0.015) (0.014) (0.016) (0.016)

Mother literate -0.020 -0.0065 -0.034
(0.030) (0.041) (0.025)

Age -0.29 -0.22 -0.32
(0.39) (0.63) (0.50)

Age squared(/100) 0.28 0.21 0.32
(0.38) (0.62) (0.50)

Observations 1926 1926 956 956 970 970
F-Stat 26.18 26.17 32.92 32.91 14.93 14.93

Notes: Each parameter is from a separate regression of hunger between 1957–1962 on log(EDR)
(EDR is short for excess death rates). We estimate the model on the matched auxiliary sample.
The stratification by gender is based on the gender variable in the primary sample. Standard errors,
clustered by province of the birth, are in parentheses. *, **, *** indicates significance at the 10%, 5%
and 1% level, respectively.

Table 3 presents estimation results from the first-stage linear regressions based on the

matched auxiliary sample, with an indicator for hunger (recall) as the dependent variable.

The table includes regressions without controls (columns 1, 3, and 5) and regressions with

controls (2, 4, and 6). As controls, we use age and literacy status of the (proxy) mother. The

table presents estimates for the full sample and estimates by gender. Across all specifications,

we find highly significant effects of the instrument (log(EDR)) and F-statistics that well

exceed 10, indicating that there is no problem of weak instruments (Staiger and Stock,

1997).

Table 4 presents two-step-TSIV estimates of the treatment effect on the matched primary

sample. We follow Abadie and Spiess (2019) for the calculation of the standard errors,

meaning that we form pairs from individuals, one individual from the primary sample and the

other from the auxiliary sample. Next, in the bootstrapping procedure we sample provinces

22



Table 4. Effects of Hunger at Age 0–5

(1) (2) (3) (4)
Metabolic syndrome (index)

Female Female Male Male

Hunger before age 5 0.37*** 0.38*** 0.045 0.062
(0.14) (0.13) (0.20) (0.21)

Mother literate 0.029 0.031
(0.034) (0.028)

Age 0.47*** 0.14*
(0.18) (0.084)

Age squared(/100) -0.43** -0.13*
(0.17) (0.081)

Observations 2517 2517 2612 2612
Notes: The results are based on TSIV estimates from separate regressions. All regressions use the
log(EDR) as the instrumental variable on the (matched) primary sample of individuals born between
1957 and 1962 from three waves of the China Family Panel Survey (CFPS). Standard errors clustered
by province based on matched bootstrap (Abadie and Spiess, 2019) with 999 replications appear in
parentheses. *, **, *** indicates significance at the 10%, 5% and 1% level, respectively.

(that in turn consists of the different pairs) in order to allow for correlation among pairs born

in the same province. The table shows that famine-induced hunger increases the standardized

metabolic syndrome index by about 0.37. The ITT estimate from the reduced-form regression

(3) equals 0.031 (see Table B2 of Appendix B for the full table). For males, the coefficients

are small and insignificantly different from zero. These findings are at odds with a number

of studies on the long-run health effects of adverse conditions in early childhood. Most of

these studies find boys to be more sensitive to adverse conditions early in life. Our results

are, however, in line with findings from other studies of the Great Chinese Famine. See e.g.

Almond, Edlund, Li, and Zhang (2010) who also find stronger effects for females.8 Table B1

in Appendix B shows results for the separate components of the metabolic syndrome index.

For females, we find significant effects for all individual components (albeit only at the 10%

level). Interestingly, for males we only find a significant effect on obesity.
8An explanation might be that in the south-east Asian context, gender preferences play a role. In the

presence of such effects, parents may have redistributed food towards boys. This may affect the first stage
estimates as well as the second stage estimates (parents may redistribute resources towards boys in the later
stages of childhood).
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We also use OLS regressions, where we use the individual’s own hunger recall information.

These OLS estimates are subject to two sources of bias: a bias due to the endogeneity of the

hunger variable and a bias due to the recall error. The latter is likely to lead to a downward

bias. We can also use the proxy hunger measurement directly (i.e., without instrumenting).

This should correct the recall errors, but estimates are still subject to endogeneity bias. The

results are presented in Table B4 of Appendix B. Using their own recall information, we

get very small and insignificant coefficients. We also find small and insignificant coefficients

when we use the recall of matched (proxy) mothers.

Height is often used as a proxy for health, and we also estimated the same model with

height as a dependent variable. For both genders, we did not find effects on height. We

also examined whether the metabolic syndrome maps into health care use. Specifically, we

looked at the association between metabolic syndrome and the number of hospital visits. In

line with our expectations, we find a positive association for females but not for males. (see

Table B5 of Appendix B).

A significant proportion of previous studies that examine the Chinese Famine use the

linear EDR in regressions like (3) as an instrument/proxy for the severity of the famine. To

highlight that our two-step two-sample method is robust to functional form misspecification,

we also present the instrumental variable estimate using the linear EDR in Table B3 of

Appendix B. The table shows that all four IV estimates are very close to our main estimates

using the log-transformed EDR (Table 4). Due to the weak instruments, the standard errors

are much larger. These results support our claim that homogeneity between the two samples

decreases biases due to model misspecifications.

5.3 Robustness to Violations of Perfect Exogeneity

While we expect hunger to be the most important channel through which a famine affects

later life outcomes, it is likely that alternative channels directly affect later-life health as

well. Famines may be accompanied by increased stress. Epidemiological studies find that
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prenatal stress exposure in humans is associated with worse later-life health outcomes, in

particular memory problems, decreased learning, depression, and dementia (Selten, van der

Graaf, van Duursen, de Wied, and Kahn, 1999; Heffelfinger and Newcomer, 2001). Further,

during a prolonged period of undernourishment the disease environment may change, which

may increase the prevalence of infectious diseases. This may affect later-life health and

socioeconomic outcomes (Almond, 2006). For such reasons the usual exclusion restriction

required for a causal interpretation of IV estimates may not hold in our context.

To examine the robustness of our TSIV estimates, we relax the assumption of perfect

exogeneity and derive bounds on the true effect of malnutrition early in life on later-life health

following Conley, Hansen, and Rossi (2012). We only perform this analysis for females.9

Consider a generalization of the standard IV model that allows the instrument Z to enter

linearly in the second-stage regression,

Yi = γDi + λZi + πXi + Ui. (5)

Conley, Hansen, and Rossi (2012) shows how to obtain consistent estimates of the effect

of interest (here γ) if λ is known. By choosing a set of fixed values for λ = λ0 and running

separate regressions for each value of λ = λ0, we can evaluate the sensitivity of the IV

estimate of γ to violations of the exclusion restriction. Conley, Hansen, and Rossi (2012)

choose the ITT estimate of the reduced-form regression (3) to determine the range of relevant

values of λ = λ0. With an ITT estimate 0.031 (see Table B2 of Appendix B) for females, we

consider values λ ∈ [0, 0.02].

We plot the TSIV estimates for different values of λ in Figure 4. The (straight) red line

is the point estimate of γ under different values of λ. The dotted line is the 95% confidence

interval. λ = 0 corresponds to the assumption that the famine affects later life health only via

hunger (D). Indeed, the point estimate at λ = 0 is 0.37. Higher values of λ are associated

with a more important role for alternative channels and hence a smaller role for hunger.
9The previous section only showed significant effects for females.
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Figure 4. 95% Confidence Intervals to Exclusion Restriction Violations
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Notes: The graph shows how the IV estimate of the effect of hunger in early life on
hypertension changes when the exclusion restriction λ = 0 is violated. Estimates and
confidence intervals come from estimating Equation (5) for females at different fixed
values λ = λ0. The red line is the point estimate under different values of lambda;
the dotted line is the confidence interval. We control for fixed effects for year of birth,
province of birth and year of interview. Family controls include mother’s literacy and
age.

For instance, with λ equal to 0.016, we assume that 50% of the famine affects health via

undernourishment.

Figure 4 shows that the straight line of point estimates for γ is relatively flat. Specifically,

at λ = 0.016, γ is about 0.2 and still significantly different from zero. The IV estimate only

becomes insignificantly different from zero for higher values of λ. To reject the long-run

impact of undernourishment, one must assume that at least 50% of the effect of the famine

is due to channels other than undernourishment. Overall, this exercise indicates that our

results are robust to moderate violations of the exogeneity assumption. The strength of the

first-stage estimates may be important for this finding. Indeed, minor deviations from the

exclusion restriction may greatly decrease precision when instruments are weak (see Conley,

Hansen, and Rossi, 2012). We have a strong first stage (cf Table 3) and consequently,

relatively small biases in the effect of hunger on later life health when the exclusion restrcition

is violated.
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5.4 Additional robustness checks and selection issues

In this section, we explore some additional specification checks to examine the robustness

of our findings. The results are presented in Table 5. Columns 2 and 4 present estimates

of with controls (age and literacy status of the mother); columns 1 and 3 report estimates

without additional controls.

Table 4 uses bootstrapped standard errors based on matched pairs, but ignored uncer-

tainty that arises in balancing the two samples in the first step. To shed light on this, we

adjust the bootstrap by resampling the original data and next use the bootstrap two-step

estimates to form alternative estimates of standard errors. To allow for arbitrary correlation

of the errors for individuals born in the same province, we do the resampling at the province

level. Standard errors based on this approach (in square brackets), are only slightly larger

than those reported in Table 4. The estimates for females remain significant at the 5%

level.10

We also restricted our sample to individuals born between 1958 and 1961. Although

recent studies (Tan, Zhibo, and Zhang, 2015) show that the food shortage problems in some

provinces were still present in 1962, the earlier literature often assumed that the famine

ended in 1961. As a result the instrument may be less noisy, but the smaller sample size

may reduce statistical power. Panel B of the table shows that the effects for females becomes

larger and the standard errors are similar.

Third, we check the impact of migration. CFPS collects detailed information on the

province of birth. While across province migration is limited (only 4%), our matching al-

gorithm may perform worse for individuals who migrated. To check this, we drop 4% (82

cases) of individuals who do not live in their province of birth at the time of the survey.

We report these results in Panel C of the table; our estimates are hardly affected by this

restriction.

We used the natural logarithm of EDR as the instrumental variable. The ad hoc choice
10Standard errors clustered at the county of birth gave similar results.
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Table 5. Robustness

(1) (2) (3) (4)
Metabolic syndrome (index)

Female Female Male Male
Panel A: alternative clustering
Hunger before age 5 0.37*** 0.38*** 0.045 0.062

(0.14) (0.13) (0.20) (0.21)
[0.17] [0.17] [0.28] [0.29]

Observations 2517 2517 2612 2612
Panel B: small sample window
Hunger before age 5 0.44*** 0.43*** 0.059 0.079

(0.12) (0.14) (0.22) (0.23)
Observations 1859 1859 2040 2040
Panel C: control for migration
Hunger before age 5 0.36*** 0.36*** -0.014 0.0054

(0.13) (0.13) (0.20) (0.23)
Observations 2387 2387 2534 2534
Panel D: non-linear instruments
Hunger before age 5 0.34*** 0.35*** 0.13 0.17

(0.13) (0.13) (0.26) (0.28)
Observations 2517 2517 2612 2612

Panel E: placebo test using cohort 1964-1967
Hunger before age 5 -0.22 -0.22 -0.26 -0.19

(0.20) (0.20) (0.35) (0.36)
Observations 2707 2707 2519 2519

Notes: Each coefficient is from a separate regression. All regressions use the log(EDR) as the in-
strumental variable. In columns (2) and (4), we control for mother’s literacy and age. In Panel A,
alternative bootstrap that takes into account the matching step appear in square brackets. In Panel
B, we drop individuals born in 1962. In Panel C, we drop individuals for whom the residing province
is different from the province of birth. Panel D uses quartile dummies as the instrumental variable. In
Panel E, we estimate the same model using individuals born between 1964 and 1967. Standard errors
clustered by province based on matched bootstrap (Abadie and Spiess, 2019) with 999 replications
appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1% level respectively.

for the functional form may be questionable. We therefore also considered a more flexible

approach where we use quartile dummies. The results, reported in Panel D of Table 5, shows

that all four IV estimates are very close to the estimates in Table 4.
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Additionally, we conduct a placebo exercise. Recall that we use variation in the peak

excess mortality rate across provinces and link these mortality rates to individuals born in

these provinces between 1958 and 1962. To examine whether other (province-level) con-

founding effects may drive our results, we apply our two-step estimator to the cohorts born

between 1964 and 1967. Studies that use a DiD design (Chen and Zhou, 2007; Almond,

Edlund, Li, and Zhang, 2010) use this cohort as a control group. The estimates, reported

in Panel D, have the wrong sign and are all insignificant. These results suggests that our

findings are driven by famine-induced hunger and not other mortality-related confounding

factors that vary by province.

We conduct falsification tests to demonstrate the statistical power of our inferences by

assigning a pseudo-treatment. We randomly assign province of birth and thus log(EDR) to

each respondent in the primary sample. If our identification strategy is valid, estimates using

these pseudo-samples should be centered around zero. In Figure 5, we plot the distribution

of the t-statistics from 5,000 estimated pseudo-treatment effects for males and females. The

two distributions are both centered around zero. To address our model’s statistical power,

we mark the location of the t-statistic of the baseline treatment effects in the distribution

of pseudo-treatment effects in Table 4. We also report the share of the pseudo-treatment

t-statistics that exceed the actual t-statistic of the baseline model (in absolute values). These

p-values support our design and the statistical power of our exercises.

A famine, especially when it lasts for a prolonged period, leads to selective mortality and

selective fertility. Starting with selective fertility, Roseboom (2010) show that during the

Dutch Hunger Winter of 1944 about half of the women in exposed areas did not menstruate.

Besides, in utero mortality is more likely to occur among frail fetuses. Frailty may depend

on biological traits or poor living conditions for women during the gestational period. In

addition to in utero mortality, mortality may also occur between birth and the survey in

2010. The extent to which these selection effects take place will vary with the intensity of

the famine. For the Chinese famine, with substantial regional variation in famine intensity,
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Figure 5. Pseudo-treatment Effects
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Notes: Pseudo-treatment vs. actual hunger exposure: the distribution of t-statistics
resulting from 5,000 random assignments of treatment to individuals, as well as the
t-statistics from the actual treatment through hunger exposure (red line). “p-values”
report the share of the pseudo-treatment t-statistics that are larger than the actual
t-statistics.

this will lead to systematic differences in province populations, leading to biased inferences.

We examine the possible influence of selection effects by looking at cohort sizes. We

expand the CFPS data by including all individuals born between 1950 and 1966. We count

the number of observations for each birth year and regress these cohort sizes on a linear

time trend. Next, we use the ratio between observed cohort sizes and predicted sizes to

plot the detrended cohort loss series. The resulting detrended series based on the CFPS

closely resembles the detrended series based on the Census in 1990 (see Figure B1 of the

Appendix B).

Figure 6 plots the detrended time series for literate and illiterate mothers. The figure

shows a clear drop in cohort size of about 40–50 percent, indicating the importance of

selective fertility and mortality. These cohort size reductions are in line with the findings

from the Dutch Hunger Winter (Roseboom (2010) and Scholte, van den Berg, and Lindeboom

(2015)). It is important whether the cohort size-reduction differs by socioeconomic status.

Figure 6 shows that there are only small differences in cohort size loss by literacy status.
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Figure 6. Cohort Loss by Mother’s Literacy
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Notes: Figure 6 plots the detrended relative cohort sizes by mother’s literacy using
CFPS-2010.

6 Conclusion

Undernourishment early in life may have lasting effects on health and socioeconomic out-

comes later in life. Most of the epidemiological and economic literature has produced

intention-to-treat (ITT) effects from reduced-form regressions that relate later life outcomes

to indicators of famine exposure early in life. This paper uses an indicator of actual hunger

experience early-in-life from a hunger recall question in the China Family Panel Survey

(CFPS). The outcome variable is observed in the primary sample, and the hunger informa-

tion is obtained from an auxiliary sample. We develop a two-step Two-Sample Instrumental

Variable (TSIV) approach that can deal with differences in the distribution of observable

and unobservable factors in the two samples. In the first step, we balance the primary and

the auxiliary sample, next we apply the classical TSIV estimator on the balanced samples.

Monte Carlo simulations show that this two Sample estimator performs much better than

other two sample estimators when the first stage is misspecified. Using the CFPS data, we

find evidence for long-term impacts on late-life health of early-life malnutrition for females,

but not for males.

Using hunger recall information has two clear advantages over previous studies. First, it

allows us to examine the relationship between hunger experiences and the commonly used
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famine indicator (excess death rates). This helps to justify instruments, as well as providing

insight into the proper specification of the reduced-form regressions used in the extensive

famine literature. We find a non-linear relationship between hunger recall and excess death

rates. A linear specification, generally used in the famine literature, leads to weak instrument

problems. This may, in part, explain the differences in findings across studies. Further, with

hunger recall information, we can estimate the causal effect of undernourishment on later-

life health. We show that these effects are much larger. Importantly, they are robust to

potentially mild and moderate violations of the exogeneity assumption.
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Appendix A Theoretical Results

A.1 Model

Suppose we are interested in estimating the treatment effect of a binary treatment D on

outcome Y in a primary population of interest, which is confounded by measured covariates

X and unmeasured ones U , with the aid of an instrumental variable Z. However, we only

observe (Yi, Zi, Xi), i = 1, ..., N1 from this population Fp. As a remedy, suppose an addi-

tional sample (Dj, Zj, Xj), j = 1, ..., N0 is available from an auxiliary population Fa, possibly

different from the primary population. Let R be an indicator variable equal to 1 if drawn

from the primary population and 0 otherwise. We use the notation D(0) to represent the

latent D in the primary sample. The following assumptions give a formal definition of the

data combination model.

Assumption A1 (Random Sampling). With probability Q ∈ (ξ, 1− ξ) for 0 < ξ < 0.5, we

draw a unit at random from Fp and record its realizations of Y , Z, and X, otherwise we

draw a unit at random from Fa and record its realizations of D, Z, and X.

Assumption A2 (Weak Overlap). Let Xp = {x : fp(x) > 0} and Xa = {x : fa(x) > 0},

then Xp ⊆ Xa.

Assumption A3 (Conditional Distributional Equality). Fp(D(0)|Z,X) = Fa(D|Z,X),

Fp(Y |Z,X) = Fa(Y |Z,X)

Similar to Graham, Pinto, and Egel (2016); Shu and Tan (2020), Assumption A1 defines

how the data are generated. Assumption A2 states that the support of the common variables

(Z,X) in the primary sample is contained within the support of the auxiliary sample. This

ensures that for each unit in the study (primary) sample, there will be matching units with

similar values of X in the auxiliary sample.11 Assumption A3 requires predictive invariance
11In the empirical application this is also verified: for less than 5% of the individuals in the main sample,

we can’t find a match from the auxiliary sample.
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for the treatment between the two heterogeneous populations. The distributions of (Y, Z,X)

and (D,X,Z) in the two populations differ only in terms of their marginal distributions for

the always measured variable, (Z,X). This assumption is similar to the idea of selection-

on-observables.

Let P ∗ be the matched sample generated by matching each unit in the primary sample,

i, to the auxiliary sample, J(i) with replacement. We only consider one-to-one matching,

since the auxiliary sample in our empirical application (section 5) is only slightly larger

than the primary sample. We choose the sets of matches J(i) to minimize the sum of

the matching discrepancies,
∑N1

i=1 d(Xi, Xj(i)), where d(·) is the distance metric to measure

the matching discrepancies. The commonly used distance metrics include, for example,

the Mahalanobis distance. Similar to the matching literature, we assume that the sum of

matching discrepancies vanishes (i.e., 1√
N1

∑N1

i=1 d(Xi, Xj(i))
p−→ 0) quickly enough to allow

asymptotic unbiasedness as N0, N1 → ∞ with N0 > N1.

We now describe the population distribution targeted by the matched sample, P ∗. Since

Fp(·) and Fa(·) are the cumulative distribution functions from the primary and auxiliary

samples, we define Ep[·] and Ea[·] as the corresponding expectation operators. We define a

matching target distribution, F ∗
p , as

E∗
p [(D,Z,X) ∈ A|R = 1] = Ep[(D,Z,X) ∈ A|R = 1] and

E∗
p [(D,Z,X) ∈ A|R = 0] = Ep[Ea[(D,Z,X) ∈ A|Z,X,R = 0]|R = 1],

where E∗
p represents the corresponding expectation operators on matched targeting distri-

bution and R an indicator that equals 1 for the primary sample and 0 otherwise. The first

expression holds because the primary sample is our matched targeting distribution. The

second expression, the distribution of (D,Z,X) in the auxiliary sample, is generated by in-

tegrating the conditional distribution of (D,Z,X) given Z,X over the distribution of Z,X

in the primary sample.
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Assumptions A1, A2, and A3 allow researchers to balance the primary and the auxiliary

sample. To proceed, let K = g(Z,X) be a (k× 1) vector of functions of (Z,X), and let β̃ be

the vector of regression coefficients obtained from regressing D on K in the matched sample.

The choice of K can be but is not limited to (Z,X). To ensure that matching is working,

we also need to assume that conditional expectations are well-behaved and H = E(KK ′) is

invertible. Other assumptions can be found in Abadie and Imbens (2012).

The following Proposition A1 formalizes the idea that the first-stage estimates of the

matched sample recover the parameters of the matching target distribution (i.e., the distri-

bution of the primary sample).

Proposition A1. Under regularity conditions, the regression coefficients (β̃) of D on K in

the matched sample, P ∗, are unbiased estimates of the analogous regression coefficients (β)

in the population of the primary sample.

Proof. We use the notation D(0) to represent the latent D in the primary sample. Therefore,

the regression coefficient in the primary (target) sample is defined by Ep[(D(0)−K ′b)2].

Ep[(D(0)−K ′b)2] = Ep[Ep[(D(0)−K ′b)2|Z,X]] (6)

= Ep[Ea[(D −K ′b)2|Z,X]] (7)

= Ep[Ea[(D −K ′b)2|Z,X,R = 0]|R = 1] (8)

= E∗[(D −K ′b)2|R = 0] (9)

The equality in (6) follows from the law of iterated expectations; the equality in (7) follows

from propensity score equality (Assumption 3). Equations (8) and (9) follow from the

definition of the matching target distribution. Until here, we have shown that matching

under propensity score equality allows us to reproduce the first stage setting for the primary

sample. Therefore, the regression coefficient in the primary sample is recovered using the

matched sample.
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To further establish the large sample property of the estimator, let β̃ be the vector of the

sample regression coefficients obtained from regressing D on K in the matched sample,

β̃ = argmin
b∈Rk

1

N1

∑
i∈P ∗

(D −K ′b)2) = (
1

N1

∑
i∈P ∗

KK ′)−1 1

N1

∑
i∈P ∗

KD. (10)

From 6-9, the matching procedure makes sure that 1
N1

∑
i∈P ∗ KK ′ p−→ H. H = E(KK ′) is

the Hessian, which is invertible by assumption.

β̃ − β = (
1

N1

∑
i∈P ∗

KK ′)−1 1

N1

∑
i∈P ∗

(KD −KK ′β)
p−→ 0 (11)

A.2 Nonlinear Models

Above, we used a linear model for the second step after balancing the primary and the

auxiliary sample. The results also hold for more complex (nonlinear) models. For example,

we can consider the following moment condition proposed in Graham, Pinto, and Egel (2016)

Ep[ψp(Y ; β)− ψa(D,Z1; β)e(Z)] = 0 (12)

with Z = (Z ′
0, Z

′
1)

′. Ep[·] denotes expectations taken with respect to the primary population.

β is the parameter of interest. There exist identification results for moment condition 12,

when D and Y are observed in two different samples (Chen, Hong, Tarozzi et al., 2008).

Note that both TSIV and TSTSLS methods can be seen as a special case of the moment

condition 12. For example, we have the linear model of Angrist and Krueger (1992) if we

take in 12 e(Z) = Z, ψp(Y ; β) = Y and ψa(D,Z1; β) = D′γ1 + Z ′
1γ2 with β = (γ1, γ

′
2)

′.
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A.3 Simulation Results

We perform simulation results for the two classical methods (TSIV and TSTSLS), the Inverse

Probabilty Tilting method (IPT), and the two-step-TSTSLS estimator proposed in this

paper. In each of our experiments, we assume that X in both the primary sample and the

auxiliary sample is distributed according to a truncated normal distribution, with support

[0, 2]. The location and scale parameters of both distributions, (µp, ω
2
p) and (µa, ω

2
a), may

differ. We assume a multinomial sampling scheme: with probability Q0 = 1/2 a draw

of (Y, Z,X) is taken at random from the population to constitute the primary sample;

otherwise, a draw of (D,Z,X) is taken from the population to constitute the auxiliary

sample. We set µp = 1.5 and µa = 0.5. We vary ωp and ωa to reflect the overlap between

the primary sample and the auxiliary sample. In case 1, we take ωp = ωa = 1. Alternatively,

in case 2, we take ωp = ωa = 0.3. In case 1, there is much overlap, which means in practice

that the distribution of X does not differ too much in both samples. In case 2, there is little

overlap, implying that the distribution of X in both samples differs a lot. Finally, we assume

that Y and D are generated according to the following data generating process:

For the primary sample we generate data according to

Y = 0.5D + U, (13)

and the endogenous variable D in the auxiliary sample is generated by

D = 0.5Z + θXZ + V, (14)

where Z is distributed as N(0, 1) and (U, V ) are distributed independently of (Z,X) as

(
U

V

)
∼ N

(
0

0

)
,

(
1 0.5

0.5 1

)
. (15)

For each simulation, we generated an i.i.d. sample of size N0 = 1000 of (Y, Z,X) from the
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population (the primary sample) and an i.i.d. sample of size N1 = 1000 of (D,Z,X) from the

population (the auxiliary sample). We then merge the two samples. With θ = 0, the setting

is simplified to the classical two sample models. With θ ̸= 0, we simulate misspecification.

Table A1 presents the results for four different scenarios. In scenario 1 the model is

correctly specified, the overlap is good (ωp = ωa = 1) and there is no misspecification

(θ = 0). All four methods (see the first four rows) perform well with a very small bias and

a small Root Mean Squared Error (RMSE). However, as expected, the two-step estimator

performs worse than the other three methods on efficiency. The two-step-TSTSLS does not

use the information of all data points, which results in a larger RMSE. In scenario 2, the

overlap is good, but the model is misspecified (θ = 0.3). The IPT estimator performs best

with the smallest bias and RMSE. We next turn to situations where the overlap in the

distribution of X in both samples is poor. In scenario 3, we take (θ = 0) (i.e., the model

is correctly specified), while in scenario 4, we assume that both the model is misspecified

(θ = 0.3) and the overlap is poor. In scenario 3, the two-step-TSTSLS estimator performs

best on the bias, but the RMSE (like the IPT estimator) is less efficient. In scenario 4, all

estimators are biased, but the two-step-TSTSLS estimator performs best.

In a second set of simulations, we vary the trade-off between efficiency (RMSE) and

bias when the model is misspecified with a varying degree of misspecification. For these

simulations we fix the overlap parameter ωp = 0.3 (bad overlap). We subsequently take 1,000

repeated simulations under four scenarios where we vary the degree of misspecification, i.e.

we vary θ. In scenario 1, we take θ = 0, i.e. the model is specified correctly. This scenario

is equal to the scenario 3 of Table A1. In scenario 2 to 4, we gradually increase the degree

of misspecification, with steps of 0.1, i.e. we take θ = 0.1, 0.2, 0.3 for scenarios 2, 3, 4,

respectively. We report the results of these simulations in Table A2.

In scenario 1 The bias of the TSIV, TSTSLS and the two-step-TSTSLS are similar

and outperform the IPT estimator. However, the two-step-TSTSLS (and the IPT) is less

efficient than the TSIV and TSTSLS estimators. When we gradually increase the degree
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Table A1. Monte Carlo Results

(1) (2) (3) (4)
N Asym. Bias Std dev. RMSE

Scenario 1: Good overlap and correct specification
TSIV 1000 0.049 0.515 0.515
TSTSLS 1000 0.007 0.522 0.519
IPT 1000 0.050 0.504 0.504
TWO-STEP-TSTSLS 1000 -0.057 2.954 2.940

Scenario 2: Good overlap and incorrect specification
TSIV 1000 0.122 0.124 0.174
TSTSLS 1000 0.118 0.126 0.172
IPT 1000 -0.000 0.096 0.095
TWO-STEP-TSTSLS 1000 0.051 0.118 0.128

Scenario 3: Bad overlap and correct specification
TSIV 1000 -0.054 0.380 0.382
TSTSLS 1000 -0.098 0.347 0.359
IPT 1000 -0.181 1.343 1.349
TWO-STEP-TSTSLS 1000 0.075 1.084 1.081

Scenario 4: Bad overlap and incorrect specification
TSIV 1000 0.415 0.161 0.445
TSTSLS 1000 0.405 0.158 0.435
IPT 1000 0.403 3.164 3.173
TWO-STEP-TSTSLS 1000 0.147 0.140 0.203

of misspecification (scenarios 2 to 4), the performance of the TSIV, the TSTSLS and the

IPT estimators deteriorate quickly. The two-step-TSTSLS estimator performs very well in

comparison with the other estimators. The IV estimate can be understood as the ratio of

the intention to treat estimate and the first stage estimate. Therefore, misspecifications in

the first stage regression translate in relatively large biases. Similarly, misspecifications in

the first stage will increase the bias of the TSTSLS. The two-step-TSTSLS is robust against

misspecifications and therefore we suggest that this method can be used as a robustness

check in empirical applications.
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Table A2. Additional Monte Carlo Results

(1) (2) (3) (4)
N Asym. Bias Std dev. RMSE

Scenario 1: Bad overlap and correct specification (θ = 0.0)
TSIV 1000 -0.054 0.380 0.382
TSTSLS 1000 -0.098 0.347 0.359
IPT 1000 -0.181 1.343 1.349
TWO-STEP-TSTSLS 1000 0.075 1.084 1.081

Scenario 2: Bad overlap and incorrect specification (θ = 0.1)
TSIV 1000 0.211 0.256 0.331
TSTSLS 1000 0.187 0.244 0.307
IPT 1000 -0.121 1.414 1.412
TWO-STEP-TSTSLS 1000 0.129 0.321 0.345

Scenario 3: Bad overlap and incorrect specification (θ = 0.2)
TSIV 1000 0.348 0.192 0.397
TSTSLS 1000 0.334 0.187 0.383
IPT 1000 -0.375 5.446 5.432
TWO-STEP-TSTSLS 1000 0.137 0.184 0.228

Scenario 4: Bad overlap and incorrect specification (θ = 0.3)
TSIV 1000 0.415 0.161 0.445
TSTSLS 1000 0.405 0.158 0.435
IPT 1000 0.403 3.164 3.173
TWO-STEP-TSTSLS 1000 0.147 0.140 0.203
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Appendix B Additional Figures and Tables

Figure B1. Cohort Loss in CFPS
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Notes: The figure compares the relative survivor birth cohort sizes in our data set
(CFPS-2010, the solid line) with the relative cohort sizes in Meng, Qian, and Yared
(2015) (Census1990, the dashed line).
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Table B1. Effects on Separate Components

(1) (2) (3) (4)
Components

Metabolic High blood
syndrome (index) Diabetes pressure Obesity

Panel A: Female
Hunger before age 5 0.37*** 0.032* 0.075* 0.063*

(0.13) (0.017) (0.040) (0.033)
Mother literate 0.029 0.0019 0.013 -0.0022

(0.034) (0.0057) (0.0090) (0.0080)
Age 0.47*** 0.024 0.11** 0.096**

(0.18) (0.027) (0.058) (0.045)
Age squared(/100) -0.43** -0.022 -0.10* -0.091**

(0.17) (0.026) (0.056) (0.043)
Observations 2517 2517 2517 2517
Panel B: Male
Hunger before age 5 0.072 -0.041 -0.040 0.18***

(0.23) (0.031) (0.069) (0.058)
Mother literate 0.031 -0.0063* 0.0084 0.022*

(0.028) (0.0033) (0.0070) (0.011)
Age 0.14* -0.0098 0.0089 0.097***

(0.084) (0.017) (0.037) (0.034)
Age squared(/100) -0.13* 0.0084 -0.0054 -0.091***

(0.081) (0.016) (0.035) (0.032)
Observations 2612 2612 2612 2612

Notes: Each coefficient is from a separate regression. All regressions use the log(EDR) as the instru-
mental variable. The sample contains all individuals born between 1957 and 1962 in three waves of
CFPS. Three components, diabetes, hypertension, and obesity, are dummy indicators constructed from
CFPS. Standard errors clustered by province based on matched bootstrap (Abadie and Spiess, 2019)
with 999 replications appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1%
level respectively.
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Table B2. Reduced-form Estimates at Age 0-5

(1) (2) (3) (4)
Metabolic syndrome (index)

Female Female Male Male

log(EDR) 0.031*** 0.033*** 0.0026 0.0036
(0.011) (0.011) (0.012) (0.012)

Mother literate 0.028 0.028
(0.030) (0.026)

Age 0.45** 0.14
(0.17) (0.085)

Age squared(/100) -0.42** -0.13
(0.16) (0.083)

Observations 2517 2517 2612 2612
Notes: The results are based on reduced-form estimates (3) from separate regressions. All regressions
use the (matched) primary sample of individuals born between 1957 and 1962 from three waves of the
China Family Panel Survey (CFPS). Standard errors clustered by province based on matched bootstrap
(Abadie and Spiess, 2019) with 999 replications appear in parentheses. *, **, *** indicates significance
at the 10%, 5% and 1% level, respectively.
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Table B3. Effects of Hunger at Age 0-5

(1) (2) (3) (4)
Metabolic syndrome (index)

Female Female Male Male
Panel A: log(EDR) as the instrumental variable
Hunger before age 5 0.37*** 0.38*** 0.045 0.062

(0.14) (0.13) (0.20) (0.21)
Mother literate 0.029 0.031

(0.034) (0.028)
Age 0.47*** 0.14*

(0.18) (0.084)
Age squared(/100) -0.43** -0.13*

(0.17) (0.081)
Observations 2517 2517 2612 2612

Panel B: EDR as the instrumental variable
Hunger before age 5 0.42** 0.41** 0.063 0.10

(0.22) (0.19) (0.30) (0.30)
Mother literate 0.029 0.032

(0.035) (0.029)
Age 0.47*** 0.15*

(0.18) (0.083)
Age squared(/100) -0.44*** -0.13*

(0.17) (0.080)
Observations 2517 2517 2612 2612

Notes: The results are based on TSIV estimates from separate regressions. All regressions are based
on the (matched) primary sample of individuals born between 1957 and 1962 from three waves of the
China Family Panel Survey (CFPS). Panel A uses the log(EDR) as the instrumental variable. Panel B
uses the EDR as the instrumental variable. Standard errors clustered by province based on matched
bootstrap (Abadie and Spiess, 2019) with 999 replications appear in parentheses. *, **, *** indicates
significance at the 10%, 5% and 1% level, respectively.
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Table B4. OLS Estimates at Age 0-5

(1) (2) (3) (4)
Metabolic syndrome (index)

Female Female Male Male
Panel A: Matched recall
Hunger before age 5 -0.049 -0.048 0.039 0.041

(0.035) (0.034) (0.032) (0.032)
Mother literate 0.027 0.030

(0.029) (0.027)
Age 0.43*** 0.14*

(0.16) (0.083)
Age squared(/100) -0.40*** -0.13

(0.15) (0.080)
Observations 2517 2517 2612 2612

Panel B: Own recall
Hunger before age 5 0.014 0.0096 0.0019 0.0020

(0.045) (0.044) (0.033) (0.034)
Mother literate 0.027 0.028

(0.029) (0.026)
Age 0.44*** 0.14*

(0.17) (0.084)
Age squared(/100) -0.40** -0.13

(0.16) (0.081)
Observations 2517 2517 2612 2612

Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province appear in parentheses. *, **, *** indicates significance
at the 10%, 5% and 1% level, respectively.
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Table B5. Effects of Hunger at Age 0-5

(1) (2) (3) (4)
Hospital Visits

Female Female Male Male

Hunger before age 5 0.20* 0.20* 0.100 0.10
(0.11) (0.11) (0.16) (0.16)

Mother literate 0.0085 -0.024
(0.020) (0.016)

Age 0.083 0.13
(0.13) (0.093)

Age squared(/100) -0.076 -0.12
(0.12) (0.088)

Observations 2517 2517 2612 2612
Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province based on matched bootstrap (Abadie and Spiess, 2019)
with 999 replications appear in parentheses. *, **, *** indicates significance at the 10%, 5% and 1%
level, respectively.

Table B6. Metabolic Syndrome and Hospital Visits

(1) (2) (3) (4)
Hospital Visits

Female Female Male Male

Metabolic syndrome(index) 0.069*** 0.071*** 0.027 0.028
(0.020) (0.020) (0.027) (0.028)

Mother literate 0.012 -0.027*
(0.018) (0.015)

Age 0.047 0.13*
(0.12) (0.073)

Age squared(/100) -0.042 -0.12*
(0.12) (0.069)

Observations 2517 2517 2612 2612
Notes: The results are based on simple OLS regressions. All regressions use the (matched) primary
sample of individuals born between 1957 and 1962 from three waves of the China Family Panel Survey
(CFPS). Standard errors clustered by province appear in parentheses. *, **, *** indicates significance
at the 10%, 5% and 1% level, respectively.
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