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Abstract

We study spillovers in healthcare by exploring how cardiologists’ treatment choices are

influenced by their peers. We employ clinical quality data from Sweden on the use of

radiation in diagnostic angiography procedures. To account for endogeneity concerns,

we instrument peers’ weekly radiation output using the plausibly exogenous arrival of

emergency cases they handle. Our estimates suggest that focal cardiologists increase

their radiation output by 0.7 standard deviations for each standard deviation increase in

their peers’ output. These workplace spillovers lead to improved quality of care. Focal

physicians detect additional blocked arteries, which increases treatment intensity and

leads to lower risk-adjusted patient mortality.
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1 Introduction

A central theme in the healthcare reform debate revolves around fostering approaches to

continue delivering high-value care while facing threats from increased service demand, a

stagnant workforce, and rising treatment costs. Improvements in precision medicine, digi-

tal healthcare, and consolidation of care are some of the lauded avenues to mitigate these

challenges. However, one area with enormous potential that has so far been overlooked is

the influence of peers among healthcare professionals (McWilliams, 2022). Although there

exists ample evidence of peer spillovers on labor market productivity in many settings (see,

e.g., Herkenhoff et al., 2024), their underlying channels and which choices they affect are

still poorly understood due to the inherent complexity of social interactions and unobserved

behavioral influences.
1
This is particularly relevant in the healthcare context where many

complicated and time-sensitive decisions must be made under considerable uncertainty.
2

In this paper, we document peer spillovers among specialized physicians in an important

and high-stakes clinical setting: the treatment of heart attacks. Heart attacks are common but

deadly events that contribute to around half of global mortality each year (Bergmark et al.,

2022). Since the onset of heart attacks is primarily stochastic with limited scope to prepare or

plan for, they provide an important healthcare context to study the consequences of behav-

ioral spillovers where timely treatment decisions may constitute the difference between life

and death. In our analysis, we focus on Coronary Angiography (CA), an ionizing radiation

medical imaging technique used to visualize and locate arterial blockages that cause heart at-

tacks. The diagnostic procedure requires the use of a radioactive contrast agent administered

by an attending specialist (cardiologist). The peer influences we study are based on the em-

pirical relation between the amount of radiation dosage administered by a (focal) cardiologist

and the corresponding radiation use of their colleagues (peers) in their recently undertaken

procedures.

We argue that studying radiation dosage employed in CA procedures is well suited to ex-

plore peer influences in healthcare because of the non-trivial nature and complex trade-off

this choice presents to the attending clinician. On the one hand, to help determine appropri-

ate treatment, the physician must choose a radiation dose high enough to accurately identify

and locate blockages in the coronary arteries, which is only partially a function of patient

characteristics. On the other hand, excessive radiation dosage is harmful to both patients and

clinicians due to the resulting exposure to ionizing radiation (Richardson et al., 2023).
3
This is

1
See DellaVigna (2009) for a summary of potential behavioral influences on decisions in social settings.

2
Previous studies on decision-making in healthcare have focused on settings with relatively clear, optimal-

and discrete choices, such as technology adoption (Barrenho et al., 2020; Agha and Zeltzer, 2022) and guideline

concordance (Meeker et al., 2016). Silver (2021) is a notable exception, which focuses on timely decision-making

in the healthcare setting.

3
The radiation output from a single procedure of CA and CA combined with an angioplasty procedure are

2



akin to a constrained optimization problem under uncertainty where the physicianmust mini-

mize radiation exposure subject to adequate visualization of arterial blockages (Kobayashi and

Hirshfeld Jr, 2017). Appropriate use of radiation for diagnostic imaging also depends critically

on the physician’s diagnostic skill, knowledge, and practical experience (Georges et al., 2017;

Chan et al., 2022), but there are limited clinical guidelines to follow, in contrast to many other

established clinical practices (see e.g., Haynes et al., 2009, on surgery checklists). Therefore, in

our setting, there exists ample room for peer workplace interactions to potentially influence

and impact physician decision-making.

Our empirical analysis is based on rich, clinical quality data from the Swedish Coronary

Angiography and Angioplasty Register (SCAAR), covering the universe of both diagnostic

and interventional invasive coronary procedures performed in Swedish hospitals. We link

physicians to their peers (co-workers) and the patients they treat on a granular level. We fol-

low 175 cardiologists whowere practicing in Swedish hospitals between 2008 and 2013 using a

dataset consisting of over 200,000 patient-level records with time-stamped data on diagnostic

and procedural information, patient characteristics, and subsequent health outcomes.

We define a focal physician’s peer group as consisting of other physicians who are treat-

ing patients in the same hospital-week cell. The main empirical concern in our (as in any

peer effect) setting, is endogenous sorting into peer groups based on both observable and

unobservable characteristics. Moreover, common time-varying shocks to the hospital envi-

ronment may also complicate causal identification of peer effects. To overcome these chal-

lenges, we use a combination of two popular empirical strategies in the estimation of peer

effects: instrumental variables (Bramoullé et al., 2009; Nicoletti et al., 2018; Harmon et al.,

2019; De Giorgi et al., 2020) and high dimensional fixed effects (Bayer et al., 2008; Kirabo Jack-

son and Bruegmann, 2009). Specifically, we propose a novel instrument to exogenously shift

our endogenous variable of interest, the average radiation dose of the focal physician’s peers

in the current week, with plausibly exogenous variation in the arrival of on-call emergency

heart attack cases treated by the same peers in the previous week. The main motivation for

the lagged instrument draws from several recent studies showing that exposure to emergency

cases may induce persistence in physician behavior, in particular following difficult encoun-

ters (see, e.g., Singh, 2021; Chodick et al., 2024; Jin et al., 2024).
4
Time-invariant unobservable

factors are accounted for by the inclusion of fixed effects at the individual cardiologist level,

while year-month fixed effects capture overall temporal shocks. We also control for the focal

physician’s own emergency cases from the previous week to ensure that potential crowding

equivalent to 155 and 755 chest x-rays, respectively (Mettler Jr et al., 2008).

4
This instrument also helps avoid reverse causality issues from the well-known reflection problem which

could invalidate instrument exogeneity if peers’ and focal physicians radiation output were measured concur-

rently. Other studies on peer effects have used similar reasoning for motivating lagged instruments (see, e.g.,

De Giorgi et al., 2010; Nicoletti et al., 2018).
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out of emergency cases is not affecting our estimates.

The suitability of our proposed instrument is based on three assumptions which we mo-

tivate and underpin in several empirical tests: (i) the arrival of emergency cases coupled with

rotational assignment of clinicians is plausibly exogenous (exogeneity); (ii) emergency cases

are qualitatively different than non-emergency cases and therefore require different radiation

doses when undergoing CA (relevance); and (iii) by using a subset of all emergency cases (i.e.,

on-call cases) where each peer is treating patients in isolation, the arrival of emergency cases

for peers is likely to affect the focal physicians’ radiation output only through the first stage

relationship (exclusion).
5

Naive OLS estimates show that focal physicians’ radiation output is associated with a 0.37

standard deviation (SD) increase for every one SD increase in the radiation dosage of their

peers, on average. Accounting for high dimensional fixed effects and case-mix controls re-

duces the point estimate to 0.17 SD. When we instrument the peer’s radiation dose with the

number of emergency heart attacks in our preferred specification, the coefficient estimate in-

creases to 0.71 SD and is robust to the inclusion of controls. This estimate corresponds to an

increase of 38 percent relative to the sample average radiation dose and suggests that a car-

diologist operating at the bottom 25th percentile of the radiation distribution in the sample

would be bumped up to the 58th percentile if exposed to a peer group at the median of the

distribution. Our baseline results are robust to several modifications of our preferred specifi-

cation, such as combinations of fixed effects, controlling for time-varying correlated shocks

on the hospital level, and excluding extreme outliers.

Several potential explanations help contextualize our higher IV point estimates. First,

even if peers are randomly assigned, a mechanical bias arises in the OLS estimates because

individual doctors cannot be their own peers. This generates a negative correlation, so-called

exclusion bias, between the focal doctor’s radiation output and the peer’s radiation output (see,
e.g., Guryan et al., 2009; Caeyers and Fafchamps, 2016). Secondly, any unobserved correlated

shocks not captured by controls, such as time-varying shocks within the same hospital-week,

would induce a negative correlation in outcomes between focal physicians and their peers (see,

e.g., Godøy and Dale-Olsen, 2018). This occur naturally in our setting where types of admitted

patients may vary across weeks.
6
While our IV approach avoids these issues, the IV-OLS

difference may also indicate presence of individual effect heterogeneity since the causal effect

identified from the instrument is the local average treatment effect of instrument compliers

(i.e., physicians who responded more to their peers’ radiation output). In line with previous

5
We conceptualize the total radiation dose we observe as a proxy encapsulating relevant information that

impacts dosage beyond directly setting the dose level, such as choice of entry point, image resolution, and

fluoroscopic time. We also study these channels directly in the paper.

6
Another form of time-varying shock that induces negative bias is the potentially strategic matching of focal

physicians with their peers. For example, hospital managers may pair peers with more conservative practice

styles with more aggressive focal physicians (Currie et al., 2016).
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findings (e.g., Molitor, 2018; Barrenho et al., 2021; Avdic et al., 2023), we document stronger

effects for junior and male physicians and for physicians practicing in academic hospitals.

Next, we evaluate whether the peer effects impacted quality of care received by patients.

We consider a range of clinical endpoints relating to appropriateness of care and adverse

patient outcomes. We find that focal physicians’ exposure to their peers increases the share

of patients they treat within the recommended radiation dosage range. However, we show

that this improvement is mainly due to a monotonic increase in the radiation dosage applied

rather than an effect of increased adherence to radiation guidelines. We next ask whether the

resulting increased radiation output among focal physicians increased detection of additional

arterial blockages and, consequentially, altered the intensity of treatments. Our results show

that focal physicians both identify and treat more arterial segments as well as spendmore time

in the initial intervention. Patient outcomes are also improved through a lower likelihood of

future repeat interventions (revascularizations), new infarctions and a reduction in one-year

risk-adjusted mortality. Finally, we assess effect dynamics and show that our estimated peer

effects materialize only in the week of peer interaction. Hence, this result suggests that the

peer effects we estimate are likely to be transitory behavioral responses to social conformity

or peer pressure in contrast to more learning-based channels (see, e.g., Mas and Moretti, 2009;

DellaVigna, 2009).

Our paper relates to three main strands of literature. First, our results contribute to the

literature on the causes and consequences of variation in physician practice styles (see, e.g.,

Chandra et al., 2011, for a review of the literature) where practice variation across physicians

are driven by factors such as professional training programs (Epstein and Nicholson, 2009),

financial incentives (e.g., Clemens and Gottlieb, 2014; Johnson and Rehavi, 2016), provider

market entry (Barro et al., 2006; Cutler et al., 2010; Avdic et al., 2024), and intrinsic factors such

as physician skill and experience (e.g., Abaluck et al., 2016; Currie and MacLeod, 2017; Chan

et al., 2022; James et al., 2022) and motivation (e.g., Kolstad, 2013). Our results speak in partic-

ular to the importance of hospital environments in shaping practice styles as documented by

Molitor (2018), and delineating the dynamics of social interactions among physicians within

hospitals investigated in Avdic et al. (2023).

Moreover, our paper complements the broader literature on the organization of teams and

peer effects in the workplace.
7
Existing work on teams has mainly focused on how teamwork

operates through collaboration (e.g., Chen, 2021), joint monitoring (e.g., Chan, 2016), or peer

influence (e.g., Kandel and Lazear, 1992; Bandiera et al., 2005; Mas and Moretti, 2009). Our

findings specifically relate to the healthcare context in which most related papers on peer

7
Studies in this literature span from high-skill contexts such as professional athletes (Guryan et al., 2009;

Arcidiacono et al., 2017) scientists (Waldinger, 2012; Jaravel et al., 2018), medical students (Arcidiacono and

Nicholson, 2005) to more routine-based jobs such as cashiers (Mas and Moretti, 2009) and fruit pickers (Bandiera

et al., 2010).
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influences have focused on settings with relatively clear, optimal- and discrete choices deci-

sions such as technological adoption (Barrenho et al., 2020, 2021; Miraldo et al., 2021; Agha

and Zeltzer, 2022) and guideline concordance (Meeker et al., 2016). Our focus on radiation out-

put in diagnosing arterial blockages in the heart extends this literature to an important and

high-stakes context where the clinician’s task is non-trivial in nature and for which optimal

treatment protocols are lacking.

Our paper builds on a few recent studies. Using switchers design to examine peer in-

fluences on physicians’ treatment intensity, Doyle Jr and Staiger (2024) find that exposure

to within-hospitals higher (lower) intensity groups induces focal physicians to increase (de-

crease) their own treatment intensity immediately after switching groups with no implication

on the quality of care. Although the empirical design differs from ours, our results on the in-

tensity of treatments speak similarly to their findings. Another closely related paper to ours

is Silver (2021) which analyzed daily peer influences on physicians in US emergency depart-

ments. The key finding of the paper is that peers induce pressure on focal physicians to speed

up at the expense of quality of care, primarily through cost-cutting measures at the margin.

Our findings are consistent with those of Silver (2021) in that peer influences are likely to

be based on behavioral mechanisms, such as social conformity or peer pressure, rather than

learning, but also highlight the important result that peers can induce positive behavior that

leads to quality improvements in healthcare.

Lastly, our study contributes to the limited but growing literature on the sources of within-

physician practice variability. A few recent studies examine, for instance, difficult cases (Chod-

ick et al., 2024) and patient complications (Singh, 2021) as factors that may temporarily shift

physician practice behavior. Findings from these studies are consistent with the anchoring

model of physician decisions proposed in Jin et al. (2024). The short-term nature of peer influ-

ence we estimate in our paper hence provides another important rationale for why physician

practice behavior is observed to vary across patients, contexts, and over time.

2 Institutional setting

2.1 Use of radiation in the treatment of heart attacks

Acute coronary syndrome (ACS), commonly known as a heart attack, ranks among the leading

causes of death worldwide (Roth et al., 2020). ACS results from a sudden partial or complete

blockage of a coronary artery, which can be fatal if not promptly treated during the acute

phase. ACS can also lead to several non-fatal consequences that may affect productivity, such

as reduced labor supply or unemployment, disability, and diminished quality of life (Luo et

al., 2023; Hall et al., 2024). In recent decades, the vast advancement of medical technology and

6



innovative management strategies in the field of cardiology have significantly improved both

survival rates and the quality of life for heart attack patients (Cutler and McClellan, 2001).

The primary clinical objective of managing patients with ACS is to restore blood flow to

the heart, which is typically achieved through the application of a minimally invasive technol-

ogy called Percutaneous Coronary Angioplasty (PTCA).
8
PTCA consists of coronary angiog-

raphy (CA); a diagnostic procedure for visualizing and assessing the patency of the coronary

arteries, and angioplasty – a therapeutic method involving the use of an inflating device (bal-

loon) to unblock the coronary artery, and a metal mesh tube (stent) to act as a scaffold to

prevent reocclusion. CA enables the attending cardiologist to identify and locate blockages in

the arteries through the use of a catheter device inserted in the patient’s wrist or groin. The

device is then remotely guided to the heart where it injects a small amount of contrast dye into

the coronary arteries to visualize blood flow through dynamic X-rays (fluoroscopy) projected

to a screen monitor. Ionizing radiation is required throughout the procedure to visualize the

vessels, to locate any blocked segments (lesions), and to effectively carry out therapeutic care

(Chambers et al., 2011).
9

Since failure to detect coronary lesions could cause severe health risks for patients, a high

radiation dose is often warranted to produce high-quality x-ray images (Catalano et al., 2007).

However, a single CA procedure is equivalent to between 155 and 755 chest x-rays (Met-

tler Jr et al., 2008). Experts in interventional cardiology and many regulatory bodies such as

the World Health Organization (WHO), International Labor Organization (ILO), and Energy

Commission in Europe deem such levels excessive
10
, not only for patients but also for clini-

cians (ICRP, 2013; Picano et al., 2014). Moreover, recent evidence suggests that even relatively

low radiation doses can have serious health implications (Richardson et al., 2023).

Against this backdrop, the proliferation of National Diagnostic Reference Levels (DRLs)

and wider radiation safety culture protocols to moderate radiation output in healthcare has

recently become a priority (WHO, 2024).
11

The scope of policies spans from stewardship

by healthcare authorities and clinical champions, through equipment management and au-

dit activities, to training programs and guidelines and checklists for individual healthcare

8
An alternative therapeutic technology is Coronary Artery Bypass Graft surgery (CABG). Performed since

the 1960s, CABG is a highly invasive procedure in which cardio-thoracic surgeons install a surgically grafted

artery to bypass a section of a blocked artery, thereby restoring blood flow to the distal part of the heart.

9
Additional details on the procedure are provided in Appendix A.

10
WHO issued a statement on the importance of “implementing basic safety standards” https://www.who.

int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures. Similarly, see

ILO press release on the workers’ exposure to ionizing radiation https://www.ilo.org/global/about-the-ilo/

newsroom/news/WCMS_854878/lang--en/index.htm.

11
DRLs are defined as upper bounds on radiation dose levels for medical imaging procedures when appro-

priate practice is followed. They are typically based on the observed distribution of doses given to comparable

reference patients (usually set at the upper quartile). Professional and regulatory bodies decide on the appropri-

ate dose ranges which are reviewed regularly. For more details, see https://www.iaea.org/resources/rpop/health-

professionals/radiology/diagnostic-reference-levels.

7
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professionals. Yet, such protocols were not introduced before the first comprehensive set of

guidelines on radiation safety was released by the International Radiation Protection Associa-

tion (IRPA) in 2014. Recent calls for professional training programs on radiation safety suggest

that the use of radiation is cardinally linked to a physician’s skill and proficiency with the pro-

cedure (Hirshfeld et al., 2005; Kobayashi and Hirshfeld Jr, 2017). Cardiologists may position

their patients at different angles, choose an entry point for the catheter, and use intermittent

beaming techniques to minimize overall radiation exposure (Georges et al., 2017).

2.2 The Swedish healthcare system

Healthcare in Sweden is mainly provided and financed by the public sector, which operates

at three levels: national, regional, and local. Healthcare delivery is primarily managed at the

regional level through 21 county councils which are legally obligated to ensure equal access to

health services andmedical care for all residents. While county councils can contract with pri-

vate providers, most healthcare services are delivered by public entities. This system implies

that elected politicians and government officials, rather than competition among healthcare

providers, determine the number, size, location, and coverage of hospitals within each region.

Patient fees are negligible and subject to national caps, and all Swedish residents are cov-

ered by universal health and disability insurance which compensates for lost earnings from

health-related work absence up to 80 percent of earnings. This generous safety net ensures

individuals are well-protected against both the direct costs of care and any income loss due to

illness. Each hospital provider is exclusively responsible for specialized care inside its defined

catchment area, meaning that patient’s place of residence generally determines the admitting

hospital. Patients have no legal right to choose their treating hospital physician, implying

that they are quasi-randomly matched depending on which physician is on duty at the time

of patient admission. Furthermore, hospital physicians are salaried employees and have no

direct financial ties with referring primary care physicians or the medical industry.

CA and PTCA is performed by interventional cardiologists, physicians specialized in car-

diology with a one-year sub-specialty training in catheter-based cardiac interventions. In

Sweden, cardiologists are normally full-time salaried employees in hospitals where their typ-

ical work week is split across several tasks, including performing CA/PTCA in the catheter-

ization laboratory (“cath lab”), attending and consulting outpatient cases, and undertaking

clinical research. The cath lab is also used frequently to treat patients with other diagnosed

conditions. For instance, patients with heart valve problems or irregular heartbeats may re-

quire catheterization for diagnostic and/or therapeutic purposes. Work typically conforms to

regular office working hours, although on-call shifts may be assigned every few weeks. Work

schedules are assigned by the hospital management in conjunction with any specific requests

from clinicians and typically rotate every other month.

8



Cardiologists in Sweden typically work independently but partake in clinical teams, in-

cluding registered nurses and radiographers, that vary depending on the day and case. In the

specific setting of CA/PTCA, the treating cardiologist is only responsible for performing the

procedure and does not see the patient with regard to other tasks, such as consulting or setting

up care management plans. Formal and informal interactions between cardiologists might oc-

cur through several venues, including department meetings to discuss “difficult” cases (e.g.,

Williams and Baláž, 2008), “bedside teachings” where junior doctors learn from more experi-

enced peers (e.g., McGee, 2014), or routine ward rounds where doctors and nurses report on

newly admitted patients (e.g., Zwarenstein and Bryant, 2000). In this paper, we abstract from

specifying the exact mechanisms throughwhich peer effects in the use of radiation occur since

spillovers might arise from either of these channels, which are difficult to disentangle. The

important consideration we make is that the treating cardiologist is the sole decision-maker

in the cath lab, meaning that the treatment choices we observe in our data are directly linked

to the attending physician.

3 Data

Our empirical analysis is based on the Swedish Coronary Angiography and Angioplasty Reg-

istry (SCAAR), a clinical quality dataset covering the universe of angiography and angio-

plasty procedures in Sweden. Since 2005, all 30 hospitals in Sweden with capability to provide

CA/PTCA have been reporting their data to the registry’s database using an online tool. The

registry is collected prospectively and includes a rich set of patient clinical and demographic

characteristics, such as age, gender, type of ACS (unstable angina, NSTEMI or STEMI), types

and level (in percentages) of blockages (one vessel, multi-vessel, complex or non-complex)

from coronary angiograms, lifestyle factors (BMI and smoking status), relevant co-morbidities

(hypertension, renal function, diabetes or COPD), and medical history (previous infarctions

and cardiac interventions). For each case, SCAAR also records treatment decisions for both

diagnostic (total radiation dose, radiation time and number of investigated vessels) and ther-

apeutic (PTCA, CABG, or no coronary intervention) procedures, whether the patient under-

went PTCA treatment, and a set of clinical endpoints (patient death, reinfarction, and sub-

sequent interventions). Details regarding treatments other than angioplasty or angiography,

including CABG, are not recorded in the registry.

We consider all CA procedures performed from 2008-2013 in our analysis sample. The

choice of starting year is determined by data constraints since this is the earliest period we

observe all hospitals with adequate information on all critical variables required for the anal-

ysis.
12

The initial sample consists of 219,559 patient-level records. For our purposes, the

12
We exclude two hospitals (three percent of patient-level observations) for which the main variable interest,

9



most important piece of information recorded in the registry is detailed measurements of the

amount of radiation administered in each CA procedure. We winsorize radiation output to the

2.5th and 97.5th percentiles of the distribution to remove any impacts from extreme outliers.
13

We also aggregate the data into physician-hospital-week cells to improve the precision of our

estimates, as the number of interventions performed on a given day is typically small. Our fi-

nal estimation sample consists of 28,467 physician-hospital-week observations, including 175

cardiologists employed in 28 hospitals between 2008 and 2013.

We define peers as all physicians who are observed to perform CA/PTCA procedures in

the same hospital in the same week. We opted against using daily detail to match peers since

assigned rotations across physicians may vary by day, meaning that physicians observed in

the cath lab one day are likely to have other (unobserved) responsibilities in the hospital on

different days in the same week. Thus, since cardiologists typically work alone in the cath

lab (excepting perioperative nurses and other support staff), there is an inverse relationship

for the likelihood of observing multiple cardiologists performing CA/PTCA on the same day.

However, two cardiologists who are observed to treat patients with CA/PTCA in the same

hospital-week cell are likely to have interacted at some point. In contrast, cardiologists who

are not observed to performCA/PTCAduring an entireweek are unlikely to have been present

in the hospital during that week.

Following Li et al. (2020), we convert the raw radiation doses recorded in our data to

effective doses to align with the conventions in medical imaging.
14
Table 1 presents summary

statistics for our estimation sample. The top panel reports measures of physician radiation

output, showing that weekly average radiation dose in the sample is 5.6 mSv (millisieverts),

which is very similar to the peers’ weekly average of 5.5 mSv. Furthermore, employing the

standard of National Diagnostic Reference Levels (DRLs) for radiation output, we observe

that only 54% of procedures fall in the appropriate dosage range, while 35% use insufficient,

and 11% use excessive dosages for CA procedures.
15

This again highlights the potential role

that peer spillovers can theoretically play in our setting. The last row of the panel shows that

physicians spend on average 9.2 minutes (554 seconds) of fluoroscopic time (i.e., the total time

x-rays are continually used to visualize blood flow) per intervention.

The second and third panels of the table describe workplace- and cardiologist-specific

characteristics in the data. In terms of the former, we see that a cardiologist performs, on

radiation output, is missing for all years. For the remaining hospitals, we exclude any observations for which

this variable is missing, amounting to around two percent of the full sample.

13
We also estimate models where we instead drop observations outside this range.

14
Details on the conversion process are provided in Appendix B.

15
DRLs are published by the European Commission on Radiation Protection (European Commission:

Directorate-General for Energy, 2015). As explained in Section 2.1, DRLs are not considered formal clinical

guidelines that are based on trial-assessed benefits and risks but rather serve as benchmarks of acceptable prac-

tice.
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average, 6.8 CA/PTCA procedures per week, of which one is an on-call emergency case. Focal

physicians work together with, on average, 3.3 peers each week, undertaking a total of 3.8

on-call cases (or roughly one per peer). With respect to physician characteristics in the third

panel, the average age is 49 with around one-third being junior (30-44), 60 percent mid-level

(45-58), and ten percent senior (over 58). Only ten percent of cardiologists are female.

The penultimate panel presents summary characteristics of the patients in our sample.

The average patient age is 67 years, and one-third of patients are female. Roughly one quarter

(0.23) of patients are categorized with complex lesions (blockages in the left-main coronary

artery or in three or more vessels). One-half of the procedures documented in the data involve

CA only, while the other half are PTCA (CA and stenting). As expected for this population,

the prevalence of co-morbidities is high, in particular with respect to hypertension, and more

than half of patients are either smokers or ex-smokers. Finally, the last panel reports post-

intervention clinical endpoints in the form of rates of one-year mortality, revascularization

(new intervention), restenosis (reocclusion), and reinfarction per 1,000 procedures, ranging

from 0.3 to 1.1.

4 Methods

4.1 Econometric context

We are interested in the causal relation between a (focal) physician’s use of radiation in CA

procedures as a function of their peers’ radiation output, as defined in the previous section.

To fix ideas, let focal physician i’s and their peers’ average radiation output be equal to Yig

and Ȳ∼ig, respectively, where g = (h, t) is the peer group matching function for hospital h

and week-year combination t. Furthermore, ∼i represents the leave-one-out estimate from

excluding physician i. We consider the following regression specification in our analysis:

Yig = αi + γt + λh × t + βȲ∼ig + δXig + τX̄∼ig + εig (1)

where αi and γt are physician and time fixed-effects (capturing, e.g., physician time-invariant

preferences and global time trends in radiation use), λh × t are hospital-specific linear time

trends (capturing, e.g., variation in radiation technology and equipment across hospitals over

time), and Xig and X̄∼ig are vectors of case-mix controls for focal physicians’ and their peers’,

respectively, summarized in Table 1. Importantly,X additionally includes the number of emer-
gency cases the focal physician treated in the previous week in order to ensure that potential

crowding out of emergency cases is not affecting our estimates in our instrumental variables

approach described below. Finally, εig is a random error term from which we estimate stan-

dard errors that are clustered at the peer group level.
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Direct estimation of Equation (1) will likely suffer from several endogeneity problems of-

ten encountered in the empirical peer effects literature (Manski, 1993; Angrist, 2014). Most

pertinently, physicians may sort into peer groups based on, for example, clinical practice

styles, thereby generating a spurious correlation between the outcomes (i.e., radiation out-

put) of focal physicians and their peers. Although physicians in our setting cannot choose

with whom to work on given days, they still have partial discretion which could impact our

results.
16

Another technical issue in estimating peer effects arises from computing the average ra-

diation output of the peers in Equation (1). Omitting the focal physician’s contributions to Ȳ

will give rise to exclusion bias because it creates a mechanical negative correlation between

the focal physician’s own and their peers’ radiation output, even in the presence of random

assignment of peers. This is due to the fact that physicians cannot be their own peers (see,

e.g., Guryan et al., 2009; Caeyers and Fafchamps, 2016).

Furthermore, physicians working in the same hospital are exposed to the same environ-

ment, meaning that unobserved shocks to the hospital influence both focal physicians’ and

their peers’ behaviors. For instance, hospital management may decide to streamline certain

tasks, such as pre-setting radiation doses on diagnostic imaging devices, or implement hos-

pital policies, such as checklists and audits. Such common shocks would lead to correlated

effects across physicians in the same peer environment and confound causal relationships.

Finally, it is difficult to establish causality when the behaviors and outcomes of focal physi-

cians and their peers are determined simultaneously. This is the well-known reflection prob-

lem described by Manski (1993) where potential reverse causality and feedback effects be-

tween peers create a simultaneity problem where causal identification can only be obtained

through exclusion restrictions on the data-generating process.

4.2 Identification strategy

To overcome the identification challenges discussed in the previous section, we employ an

instrumental variables approach coupled with high-dimensional fixed effects. Specifically, we

instrument our endogenous variable in Equation (1), the leave-out average radiation output

of focal physician i’s peers (Ȳ ), with the number of on-call emergency cases for the same peers

16
We conduct conditional random assignment tests as proposed by Jochmans (2023). The test builds on

regression-based methods that check for systematic correlation between the characteristics of focal individu-

als and their peers’, adjusting for within-urn fixed effects that contain all potential peer groups of the focal

physician within a hospital-time window. The test accounts for biases that might arise from heterogeneous

group sizes and tests the null of random assignments. Table C.1 of Appendix C shows that the test fails to reject

the null, suggesting that non-random assignments are less likely to be an issue in our context.
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in the previous week. Formally, the instrument is defined by:

Z∼ig =
∑

j|i/∈J

N oc
j,t−1, (2)

where N oc
j,t−1 refers to the total number of on-call emergency cases handled by peer j ∈ J

in week-year t − 1, where J are all physicians belonging to group g = (h, t). Thus, the

instrument Z in Equation (2) is equal to the total number of on-call emergency cases handled

by the focal physician’s peer group in the preceding week. The first-stage specification of the

two-stage least-squares (2SLS) estimator is consequently defined by:

Ȳ∼ig = αi + γt + λh × t + ϕZ∼ig + δXig + τX̄∼ig + εig (3)

where Z∼ig is defined as per Equation (2). The projection of Ȳ∼ig from Equation (3) is then

used in the second stage to replace Ȳ∼ig from Equation (1) where β̂ is now the 2SLS estimator

of β. We standardize radiation output to have a mean of zero and a standard deviation of

one, so that β̂ is interpreted as the number of standard deviations a focal physician changes

their radiation output in response to a one standard deviation change in peers’ (instrumented)

average radiation output. We next discuss the logic behind the different assumptions required

for the 2SLS estimator to provide valid causal inference.

4.2.1 Relevance

The relevance of the instrument is motivated by the context of our setting. Specifically, emer-

gency patients constitute more urgent and risky cases, implying that the benefits of using

lower radiation doses are small compared to the risks of failing to detect important informa-

tion in the diagnostic phase of the intervention (Pope et al., 2000; David and Brachet, 2009;

Bragard et al., 2015). Emergency cases are also generally more challenging, which is another

predictor of higher radiation doses (Chodick et al., 2024). The left panel of Figure 1 displays

distributions of radiation doses for emergency and non-emergency cases in our data. The fact

that radiation doses for emergency cases are more skewed to the right than non-emergency

cases provides empirical evidence in support of the previous conjectures.

Several recent studies have shown that exposure to emergency cases may induce persis-

tence in physician behavior, in particular following difficult encounters (see, e.g., Singh, 2021;

Chodick et al., 2024; Jin et al., 2024). The right panel of Figure 1 visualizes the first stage vari-

ation for our instrument, showing that treating additional emergency cases in a given week

is strongly associated with a higher average radiation dose by peers in the following week.

Formal first-stage regression results from the estimation of Equation (3) are reported in Panel

B of Table 2 and indicate a robust statistical relationship corresponding with the graphical
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evidence. We report both the Montiel-Pflueger F-statistics, following Andrews et al. (2019),

and Anderson-Rubin statistics to formally test for weak instruments, as suggested by Keane

and Neal (2023).

4.2.2 Exogeneity and exclusion

We next assess the instrument exogeneity and exclusion assumptions. In our context, exo-

geneity implies that the arrival of on-call emergency cases to peers should follow a quasi-

random distribution. We argue that the occurrence and timing of heart attacks are inherently

difficult to predict, and patients with such symptoms must be promptly attended to by on-call

physicians thus reducing their ability to self-select into cases. Following the approach set out

in Hoe (2022), we conduct an indirect test of instrument exogeneity by evaluating whether

the arrival of emergency cases can be predicted ex-ante. The left panel of Figure 2 displays

the actual and predicted numbers of weekly emergencies, where the latter is estimated from

a Poisson regression model including hospital and week-year fixed effects. The actual arrival

distribution of cases closely tracks the theoretical Poisson distribution, suggesting that we

cannot reject the null hypothesis of exogenous arrival of emergency cases in our setting.

The exclusion restriction requires that the arrival of emergency cases treated by peers

in the previous week has no direct impact on a focal physician’s current radiation output.

This assumption is violated if, for instance, emergency cases were systematically allocated to

physicians with specific practice styles or skills. Such sorting could arise through a “crowding

out” mechanism wherein a focal physician’s exposure to emergency cases is inversely related

to their peers’ exposure. We address this potential issue in two ways: first, we include only

the subset of on-call emergency cases where the on-duty physician is solely responsible for

handling incoming patients. This restriction should address concerns regarding systematic

sorting of physicians to emergency cases (see, e.g., Card et al., 2008, 2009; Doyle Jr et al., 2015;

Chandra et al., 2016, for other papers using similar arguments). Furthermore, we control for

the focal physicians’ own emergency cases in the previous week to directly close down any

direct links between their exposure to emergency cases (which may be correlated with peers’

exposure) and their subsequent radiation output. In addition to the set of case-mix controls,

these adjustments arguably improve the validity of the exclusion restriction.

We also provide informal evidence supporting the validity of the exclusion restriction by

investigating systematic allocation of emergency cases to physicians in our data. We estimate

a mixed model to estimate physician-specific random intercepts as a measure of each physi-

cian’s underlying preference for radiation and then plot the estimated intercepts against the

distribution of emergency cases. To reduce the likelihood of peer influence contamination

in the estimated preference parameters, we only include days where the physicians work by

themselves (i.e., no overlapping observed activity from peers on the same day) in the model
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and estimate the random intercepts conditional on hospital and week-year fixed effects.

The right panel of Figure 2 plots the estimated random intercepts against the weekly share

of emergency cases for each physician in our estimation sample. The horizontal axis displays

physicians’ relative preference for radiation recentered at zero. In the case of systematic sort-

ing of physicians to emergency cases, the resulting plot should show a significant relationship

between shares of emergency cases and physicians’ preference for radiation dosage (see, e.g.,

Currie et al., 2016; Dobbie et al., 2018). The statistically insignificant slope suggests that such

sorting is unlikely to be present in our physician sample.

4.2.3 Monotonicity

In the presence of heterogeneous treatment effects, our empirical approach also requires an

additional condition of instrument monotonicity to recover the local average treatment effect

(Angrist et al., 1996). In our setting, the monotonicity assumption implies that the average

radiation output in the current week for all peer groups of the focal physicians should weakly

increase with the average number of emergency cases treated by the same peers in the previ-

ous week. In other words, the first stage relationship should have the same sign in all subsam-

ples. To assess the validity of this assumption, we follow common practice from the economic

literature on judges’ decisions (see, e.g., Arnold et al., 2018; Bhuller et al., 2020) and estimate

the first-stage relationship across a set of observable physician characteristics.
17

5 Results

5.1 Peer effects on radiation output

Results from the estimation of our instrumental variables model are reported in Table 2. Ra-

diation output for both peers and focal physicians are standardized with a mean of zero and a

standard deviation of one. Each column refers to a different model specification: from left to

right, excluding all controls and fixed effects, including fixed effects for physician and week-

year, and including both patient controls and fixed effects, respectively. Standard errors in all

regressions are clustered on the peer group level.

Panel A presents OLS estimates of β from Equation (1). The point estimate from Column 1

shows that a one standard deviation (SD) increase in peers’ radiation output is associated with

a 0.37 SD increase in the focal physicians’ own output. Including physician and time-fixed

effects attenuates this estimate by approximately 50 percent, while the inclusion of patient

risk adjusters seems to have little impact on the estimated coefficient. However, as discussed

17
Table C.2 in Appendix C reports the first stage results from this exercise, showing that estimates are positive

and statistically significant for different age groups and gender of the physicians.
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in Section 4.1, these estimates are unlikely to uncover causal peer effects on physician behavior

in our data.

Panel B reports the first stage estimates from Equation (3). The results indicate a positive

relationship, implying that increased exposure to on-call emergency cases among peers in

one week increases their average radiation output in the following week. An increase of one

additional on-call emergency case in the peer group increases the average radiation output

of peers by 0.018-0.031 SD, depending on the model. The Montiel-Pflueger F-statistics range

between 35 and 73 across specifications, indicating that the instrument is strong.

Panel C and D report the reduced form and second-stage estimates, respectively. The for-

mer suggests that one additional peer on-call emergency case increases the focal physician’s

average radiation output by between 0.013 to 0.025 SD, similar to the corresponding impact on

peers’ radiation output. Given that the 2SLS estimate is computationally equivalent to the ra-

tio between the reduced form and the first stage, it comes as no surprise that the second-stage

estimate in Panel D ranges between 0.70-0.80. Thus, peers pass on most of their increased

radiation behavior from treating emergency cases to focal physicians. Based on the summary

statistics from Table 1, the estimates from our preferred specification in column (3) suggest

that exposure to one more emergency case per peer increases peers’ average radiation dose

output by 0.13 mSv which in turn induces a 0.09 mSv increase in focal physicians’ average

dose through peer influence.
18

The magnitude of the 2SLS estimates are considerably larger than the corresponding OLS

estimates. As mentioned in Section 4.1, this could be due to several factors including system-

atic sorting of physicians into peer groups. Negative sorting that leads to downward bias of

OLS could arise if hospital management chooses to assign physicians with higher preferences

for radiation to physicians with lower preferences to manage overall radiation output admin-

istered in a given shift. Another explanation is the possibility of heterogeneity in peer effects

since the 2SLS estimate is interpreted as a local average treatment effects for the sample of

compliers. We study effect heterogeneity in more detail in Section 5.3 below.

5.2 Appropriateness and quality of care

5.2.1 Adherence to acceptable radiation levels

After establishing that peers influence focal physicians to adjust their radiation output, we

next focus on whether these spillovers impact patient outcomes. We conjecture that the peer

effects may be transmitted through two main channels: first, they may convey suggestions on

how to improve quality of care through improved adherence to a range of acceptable dosages

18
For comparison, this value corresponds approximately to the dose received from exposure to one chest x-ray

procedure in the US. See https://www.epa.gov/radiation/radiation-sources-and-doses.
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defined as DRLs (Diagnostic Reference Levels). As explained in Section 2.1, DRLs is a bench-

mark used to determine whether the radiation dose applied during routine procedures is un-

usually high or low and is not a formal trial-based clinical guideline. Second, they couldmerely

be a simple reaction prompted by more aggressive peer radiation behavior from treating more

emergency cases. To disentangle the two mechanisms, we argue that we should observe an

increase in focal physicians’ applied radiation doses within the recommended dose range if

peer spillovers primarily mediated information about adherence to radiation guidelines. On

the other hand, if peers mainly projected a more aggressive radiation practice style onto the

focal physicians, we would observe a monotonically higher radiation output for the latter also

above the upper threshold for the recommended dose range.

To this end, we define radiation dose categories in accordance with the recommended

DRLs for the related interventional procedures (see, e.g., Vassileva and Rehani, 2015). Specifi-

cally, we assess whether radiation dosage is considered “insufficient”, “appropriate”, or “exces-

sive” with respect to the DRL classification. Table 3 reports the results from estimating peer

influence on focal physicians’ share of radiation doses in each of the three DRL categories us-

ing our preferred 2SLS specification. We use the standardized share of patients in each group

as dependent variable, to align with the coefficient interpretation in Table 2.

The first two columns show that the share of insufficient doses among focal physicians

decreased significantly due to peer exposure. The effect size of 0.678 in the specification with

controls translates into a decrease of 21 percentage points (0.678 × 0.312) reduction in the

proportion of patients with insufficient dosage on average, or a decrease of almost 60 percent

with respect to the mean. Using the example from the previous section, exposure to one

more emergency case per peer translates into a 1.3 percentage points (3 percent) drop in

the share of patients with insufficient radiation dose. Turning to the results for the share of

appropriate doses in columns (3) and (4) present, we observe positive coefficient estimates

implying an improvement in the overall share of patients that were treated with guideline-

adhering radiation dosages. The point estimate from our preferred specification in column

(4), 0.371 can be translated into an increase of 11 percentage points (20 percent) of patients in

this category, or a 0.7 percentage point increase per additional peer emergency case.

Finally, the last two columns report results for the share of cases with excessive radiation

doses. The positive point estimates imply that the peer influence leads to an increase in this

category, lending support to the “monotonicity” mechanism rather than the guideline adher-

ence mechanism. Specifically, the point estimate from column (6) suggests that the average

share of patients treated with excessive radiation doses increased by 10 percentage points

(0.533 × 0.189), or almost doubled with respect to the baseline sample mean. In terms of the

impact per additional emergency case treated by each peer, the effect size is similar to the

change in the share of appropriate doses, 0.7 percentage points. Thus, the reduction in the
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share of patients with insufficient radiation doses is redistributed equally across the appro-

priate and excessive radiation categories, indicating a general increase in the use of radiation

among focal physicians from peer influence.

5.2.2 Treatment intensity

We next explore whether focal physicians’ increased use of radiation also impacted the inten-

sity of therapeutic treatments. We first study whether higher radiation doses led to the detec-

tion of additional and/or more complex lesions during the CA procedure. This may occur if

higher radiation doses improve physicians’ ability to detect lesions when analyzing medical

imaging scans.
19
We also analyze whether any such increased detection rates prompted focal

physicians to treat their patients more intensively on the extensive (i.e., perform more PTCA

procedures) and intensive (i.e., treat additional lesions) margins.

To evaluate the link between radiation dose and detection, we study three additional di-

agnostic outcomes from the CA procedure: the total fluoroscopic time used in the procedure,

whether the case is regarded as complex, and the total number of blocked artery segments.

Columns (1)-(3) of Table 4 display the results from estimating our preferred 2SLS model for

standardized versions of these outcomes. Column (1) shows a positive and statistically signifi-

cant impact on the total fluoroscopic time used in the diagnostic phase. In particular, the point

estimate of 0.330 implies that focal physicians increase the total diagnostic time by around 97

seconds (0.330 × 294), or 17 percent, for each SD increase in peers’ radiation output. This is

equivalent to 5.7 seconds for each additional weekly emergency case treated per peer. Point

estimates for the prevalence of a complex case and for the number of segments are also posi-

tive and statistically significant, with magnitudes corresponding to 1.2 percentage points (five

percent) greater likelihood of classifying a case as complex, and 0.1 (14 percent) additional de-
tected lesions per SD change in peer radiation dose (0.1 percentage points and 0.01 additional

lesions per emergency case). Hence, the peer influences led focal physicians to both increase

their total duration spent in the diagnostic phase and to increase lesion detection rates.
20

The effects of peer influence on focal physicians’ treatment intensity are reported in the

19
The total radiation output from fluoroscopy is a function of the product of the applied dose and the contin-

uous duration of x-ray exposure. Thus, a higher total radiation dose suggests longer fluoroscopic time, which

should be weakly positively related to increased detection rates.

20
Since complex lesions are often treated with CABG surgery, we also study whether a greater detection rate

of complex cases led focal physicians to change their treatment recommendation from PCI to CABG. Column

(4) of Table 4 reports the results, showing that peer influences did not significantly change the share of patients

assigned to CABG. Following Avdic et al. (2024), we also examine whether peer effects on treatment intensity

vary by type of hospital. Local hospitals, typically a single technology hospitals (i.e. PTCA-only) also face a

financial obligation to cover referral costs when transferring patients to other hospitals. Hence, we expect peer-

induced treatment intensity to be stronger at the extensive margin (i.e. the probability to perform PTCA) in the

local hospitals. Indeed the results in Table C.3 of Appendix C support this expectation. Conversely, the effect in

academic hospitals shown in Table C.4 is muted, likely due to the presence of cardio-thoracic surgeons.
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last two columns of Table 4. Specifically, column (5) shows the results for the probability that

a case was treated with PTCA after the diagnostic phase (extensive margin), while column

(6) refers to the total number of stents inserted given that PTCA was performed on the pa-

tient (intensive margin). Our results show that both outcomes were positively impacted, with

magnitudes corresponding to a 4.9 percentage points (10 percent) increase in the probability

of PTCA and a 0.11 percentage point (16 percent) increase in the number of inserted stents,

respectively.These effect sizes correspond to 0.01 additional stents and 0.2 percentage points

increased PTCA probability per additional peer emergency case, respectively. Hence, peer-

induced increases in radiation output led focal physicians to treat patients more intensively.

5.2.3 Patient health outcomes

Given our findings from the last subsection, we now turn to study the impact of peer influences

on patient health outcomes. We consider relevant clinical endpoints, including: restenosis (re-

occlusion of the artery); reinfarction (subsequent heart attack); revascularization (subsequent

PTCA); and all-cause mortality (patient death). These outcomes are all measured within one

year after the initial intervention and are standard in the medical literature when evaluating

the effectiveness of treatments in cardiovascular care.

Estimation results are presented in Table 5, suggesting significant improvements in the

quality of care in terms of lower prevalence rates (in rates of 1 per 1,000 patients) for all four

outcomes. The magnitudes range between reductions of 0.25 to 0.91, or, equivalently, from

80 to 108 percent from baseline levels for each SD change in peers’ radiation output. How-

ever, given that this change is an extreme extrapolation of our results based on the identifying

variationwe use to estimate these effects
21
, themore appropriate comparison of another emer-

gency case per peer suggests reductions of between 0.01 (for restenosis) and 0.05 (for one-year

mortality) adverse outcomes per 1,000 patients, corresponding to reductions of between four

and six percent from baseline levels.

To sum up the results from this section, the spillover effects derived from peer group ex-

posure to emergency cases led focal physicians to apply radiation more aggressively to their

patients in the diagnostic phase. In turn, the increased use of radiation is associated with

higher lesion detection rates, more intensive therapeutic case management, and, importantly,

significant reductions in adverse health outcomes for this patient population. While our ap-

proach precludes us from directly link these outcomes in a causal chain, our findings are

nevertheless consistent with such a mechanism.

21
Specifically, the first-stage estimate suggests that each additional emergency case treated by peers increases

their radiation output by around 0.02 standard deviations. Since our instrument (peers’ total on-call emergency

cases treated per week) has an SD of 4.78, the identifying variation we use in our analysis is substantially lower

(roughly one-tenth) than the overall variation in the endogenous variable.
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5.3 Extensions

5.3.1 Physician heterogeneity

The conventional instrumental variables model assumes that the spillover effects we estimate

are homogeneous across physicians. However, previous research has suggested that peer ef-

fects typically vary by sex and age (see, e.g., Han and Li, 2009; Lavy and Schlosser, 2011;

Beugnot et al., 2019). In the presence of effect heterogeneity and given the assumption of

instrument monotonicity, the 2SLS estimator is only informative about the subgroup of com-

pliers for whom our instrument changed behavior. To characterize cardiologist compliers in

our data, we proceed by estimating our models for different sample subsets.

The first two columns in Table 6 report separate 2SLS estimates when restricting the sam-

ple to only male and only female focal physicians, respectively. The results suggest that male

cardiologists respond more to input from peers, while female physicians have both a smaller

effect size and a weaker first stage. While the latter can be related to the relatively small

number of female physicians (17 out of 175) in our data, the lower point estimate could also

indicate stronger resistance to peer influence. The next three columns report the estimates

from different age groups, partitioned into groups of junior (age 31-44), mid-career (age 45-

58), and senior (over 58 years of age) physicians. Estimates for the two younger groups are

broadly similar and correspond to our pooled results, while the result for senior physicians

is far from significant and based on a very weak first stage. This result echoes findings from

similar contexts, includingMolitor (2018) and Avdic et al. (2023), and is perhaps not surprising

if more senior physicians have already acquired an established practice style and are therefore

less malleable relative to less experienced clinicians.

The final set of columns reports estimates by hospital type. Specifically, we compare re-

sults for district (non-teaching) and academic (teaching) hospitals where we hypothesize that

the latter, through their capacity as learning centers, may have more advanced infrastruc-

ture for enabling peer interactions and harnessing workplace spillovers. Moreover, if more

distinguished cardiologists are more likely to work in academic hospitals, we should expect

that junior physicians in these hospitals would have additional avenues for feedback and ex-

change compared to physicians employed in the less prestigious district hospitals. However,

although the results reported in columns (6) and (7) indicate a slightly larger point estimate

for the sample of academic hospitals, the difference is not large enough to statistically reject

the hypothesis of effect homogeneity.

5.3.2 Effect persistence

Understanding whether the effects we estimate permanently change behavior via some form

of learning through an information transfer mechanism or whether it constitutes a more be-
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havioral transitory response from focal physicians’ is crucial for contextualizing the benefits

of harnessing peer spillovers. Thus far we have only considered spillover effects across two

consecutive weeks. However, the peer influences we identify may persist over longer time

horizons.

To investigate the persistence of peer influences in our context, we estimate dynamic event

study versions of Equation (1) where the dependent variable is defined as leads and lags of

the original outcome (i.e., Y∼igt+k
for k = {kmin, kmin + 1, ..., kmax − 1, kmax}). In this specifi-

cation, we estimate the model for different outcomes while keeping the right-hand side fixed,

including the instrumented peer exposure variable, Ȳ∼ig. To control for potential peer in-

fluences from other periods, we also successively include (instrumented) past peer exposure

variables for the other time periods, Ȳ∼igt+m for m = {kmin, ..., k | 0 /∈ m}, in the model.

Hence, we estimate the following model separately for each k ∈ {kmin, kmax}:

Yigt+k
= αi + γt + λh × t + βkȲ∼ig +

k∑
m=kmin|m̸=0

γmȲ∼igt+m + δXig + τX̄∼ig + εig (4)

where the βk coefficients across all K ∋ k regressions measure the peer influence centered

around period t at time k, while the γm coefficients control for dynamic peer exposure in

previous time periods. As focal doctors are exposed to different peer groups each week, this

specification allows us to assess the lasting effects of peer group g during week t.

Figure 3 displays the β̂k estimates from estimating Equation (4) for k ∈ {−3, 3}. Two

important patterns can be discerned from the figure: first, we do not observe any anticipatory

effects in the weeks leading up to the focal time period at k = 0. This is a reassuring finding

since we do not expect spillover effects to impact focal physicians’ past outcomes. Second,

while the strong positive spillover effect in period k = 0 is consistent with the results previ-

ously reported in Table 2, we also see a tapering off in subsequent periods indicating a highly

transitory impact of peers on physician behavior. Specifically, the point estimate drops by

about one-half between the initial week and the next and has essentially disappeared after

three weeks.

The temporary nature of the response depicted in Figure 3 is consistent with a peer pres-

sure or a framing effect mechanism in contrast to a persistent behavioral adaptation from

learning or updating of professional beliefs (see, e.g., Mas andMoretti, 2009; DellaVigna, 2009).

This result is perhaps not entirely surprising for several reasons. First, focal doctors’ responses

show a behavioral alignment with the peers they encounter in a given week. However, being

exposed to different peers in different weeks may diffuse the feedback received, especially

when professional uncertainty is high as in the current setting. These findings are consistent

with those of Molitor (2018), Avdic et al. (2023), and Doyle Jr and Staiger (2024) where doc-

tors’ practice styles adjust to those of their peers after a change in their practice environment.
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Moreover, since the effects we estimate are identified from quasi-random peer feedback, it is

possible that focal physicians may not be as receptive to advice from peers that they them-

selves did not choose or were self-selected into. Finally, the paucity of clinical guidelines on

radiation dose for interventional procedures may compound the disregard of peer feedback

since it is not based on research evidence or established norms. While these reasons suggest a

limited scope for peer knowledge transfer in our setting, it is still relevant for understanding

which factors may inhibit learning and malleability of physician practice styles.

5.4 Robustness checks

In this section, we conduct a series of robustness checks to assess the sensitivity of our empir-

ical findings. Columns (2) to (4) of Table 7 report estimation results from a set of alternative

specifications of our main instrumental variables model, while our preferred 2SLS estimate is

reproduced in column (1) for comparison. First, while our baseline model controls for hospi-

tal linear time trends, there could still exist week-to-week variation that our fixed effects may

not account for. Motivated by Nicoletti et al. (2018), we therefore control for weekly hospital

case volumes to adjust for time-varying workplace dynamics within hospitals that may be re-

lated to the allocation of cases to physicians and possibly violating the instrument exclusion

restriction. The reported 2SLS estimate in column (2) is virtually equal to our main estimate

and suggests that any correlated effects may have been properly accounted for by the com-

bination of fixed effects and the instrument we apply. In column (3), we report results from

including focal physicians’ own radiation output in the previous week as an additional control

to address the potential issue that such behavior might in some cases be directly related to

their current radiation output. Again, this alteration only marginally changes the point esti-

mate. Finally, since the distribution of our radiation variable includes some extreme outliers,

we study whether removing these has an impact on our results. Column (4) presents the 2SLS

estimate when excluding observations above the 97.5 percentile of the radiation dose distri-

bution from our sample (567 observations), showing a slight, but not statistically significant,

attenuation of the point estimate from column (1).
22

Another remaining concern with our baseline estimates is potential autocorrelation in the

instrument. If the number of emergency cases treated by physicians in one week is system-

atically linked to the total emergency cases in the following week, then the instrument will

be invalid. This could happen if, for example, the hospital planner changes shift rotation to

relieve on-duty physicians following a high-load emergency shift in the previous week. We

address this by augmenting our main specification by controlling for contemporaneous peers’

emergency cases. If there is negative autocorrelation, we expect the estimates to tend towards

22
We have also tested the sensitivity of our results to various combinations of fixed effects. Results from these

are provided in Table C.5 of Appendix C, showing small and statistically insignificant variations across the board.
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zero. Columns (1) and (2) of Table 8 report these results, showing, if anything, larger point

estimates compared with our preferred 2SLS specification. In addition, columns (3) and (4)

present estimates from controlling for focal doctors’ emergency cases in both the current and

previous weeks. Our result remain robust also to these inclusions.

Finally, we study whether our results vary with the type of patients focal doctors see.

Specifically, we examine peer influences of focal doctors for emergency and elective cases

and across CA and PTCA procedures. Table 9 presents results from this exercise, showing

that peer effects are consistent across both case types and procedures.
23

6 Conclusion

Social interactions in the workplace are ubiquitous in almost all professions. The healthcare

sector is no exception: physicians and other healthcare professionals continuously interact

to exchange ideas on patient care, provide feedback on clinical decisions, and share opinions

about new medical technology (see, e.g., Coleman et al., 1957). Understanding and quantify-

ing the role and potential benefits of team-based learning and the influence of peers on health

system functionality and efficiency should, therefore, be a priority for policymakers and ad-

ministrators. However, despite the vast scope for identifying and utilizing such sources of

productivity, it has been largely overlooked in the debate over healthcare reform.

This paper shows that peer influences in the specific context of the use of ionizing radi-

ation in the diagnosis and treatment of heart attacks in Sweden are both salient and conse-

quential. Using an instrumental variables approach where we exploit the plausibly random

arrivals of emergency cases for on-call physicians to account for endogenous peer formation,

we show that focal physicians strongly align their applied radiation doses to changes in their

peer groups’ radiation outputs. These peer effects have downstream implications for the qual-

ity and appropriateness of care provided by physicians in our sample. Specifically, we provide

evidence that the higher radiation output relayed by peers prompted focal physicians to em-

ploy a more aggressive treatment practice style, presumably through a higher detection rate

of arterial blockages, and is associated with a lower risk of adverse clinical events, including

patient death and subsequent heart attacks. However, the peer effects are transient and fade

out quickly after the initial peer exposure, suggesting that they are channeled by peer pressure

and or framing effect rather than a peer learning behavioral mechanism. This is contextually

important as it allows us to expand our understanding of the factors that may encourage peer

23
We also conduct a more systematic bounding exercise on our main 2SLS estimates based on Conley et al.

(2012) presented in Figure C.1 of Appendix C. This method enables inference on the 2SLS estimates by accounting

for the possibility of a direct effect of the instrument on the outcomes. The graph shows that peer effects remain

positive and statistically significant even if almost the entire reduced form estimate would be attributed to a

direct impact of the instrument on the radiation dose outcome.

23



learning among medical doctors.

In conclusion, our results provide important policy implications aswell as contribute to the

scant academic literature on social spillovers in healthcare. Even in the Swedish context where

competition and profit motives among healthcare providers and professionals are minimal,

there exist glaring quality differences in care across hospitals and geographical regions. Un-

derstanding the role of positive and negative social multiplier effects is one important venue

to explain such quality variations. Moreover, harnessing the former and weeding out the lat-

ter elements is key for improving efficiency and sustainability to prepare for growing future

healthcare needs. While our analysis provides important insights on the prevalence and the

consequences of peer influence in healthcare, future research could focus on the specific be-

havioral mechanisms (see e.g. DellaVigna, 2009; Bursztyn et al., 2014; Bordalo et al., 2020) at

play in the interactions between healthcare professionals that precipitate these outcomes.
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Tables and Figures

Table 1.

Summary statistics

Mean SD

Physicians’ output (weekly averages)
Radiation dose (mSv) 5.56 2.98
Peers’ radiation dose (mSv) 5.55 2.15
Share of patients - excessive dosage 0.11 0.19
Share of patients - insufficient dosage 0.35 0.31
Share of patients - appropriate dosage 0.54 0.30
Fluoroscopic time (sec) 553.57 293.90

Workplace
Weekly cases (focal) 6.82 4.78
On-call emergency cases (focal) 1.00 1.59
Peer’s total on-call emergency cases 3.81 4.78
Number of peers 3.30 1.80

Physicians’ characteristics
Age 48.97 7.47
Female doctors (share) 0.10 0.30
Peers’ age 48.21 6.14
Junior (30-44) 0.32 0.47
Mid-level (45-58) 0.57 0.50
Senior (> 58) 0.11 0.31

Patients’ characteristics
Patients’ age 66.50 6.19
Female (share) 0.33 0.47
Complex cases 0.23 0.23
PTCA/PCI performed 0.50 0.28
Diabetes (share) 0.20 0.21
Hypertension (share) 0.60 0.28
Previous infarction (share) 0.25 0.23
Previous PCI (share) 0.22 0.22
Previous bypass (share) 0.10 0.16
Smoker/ex-smoker (share) 0.58 0.28
Weight (kg) 81.46 7.86

Quality (rate per 1,000 procedures)
Mortality - 1 year post 1.13 2.56
Revascularization - 1 year post 0.90 2.25
Restenosis - 1 year post 0.30 1.31
Infarction - 1 year post 0.69 1.94

Observations 28,467

Note. Data from Swedish Coronary Angiography and Angioplasty Registry (SCAAR) pooled across years 2008-2013. Radiation dose is

defined as Effective Dose (mSv), see Appendix B for detailed explanation on the calculation. Share of patients receiving range of reference

levels in radiation dose are classified based on the European Diagnostic Reference Levels (DRLs) as specified in Section 3. Peer’s total on-call

emergency cases are derived from cases the peer’s treated during on-call shifts (outside working hours). Quality outcomes are calculated at

the rate per 1,000 procedures in 1-year post intervention date.
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Figure 1.

IV Relevance

Note. Data from Swedish Coronary Angiography and Angioplasty Registry (SCAAR) pooled across years 2008-2013.

Left panel plots the distributions of average radiation dose (in mSv) in : 1. Emergency cases (green) and 2. Non-

emergency cases (grey). The green dots on the right panel plots the total weekly on-call emergency cases the peers’

treated (x-axis) on the average peers’ radiation dose (y-axis, in mSv). Green line on the right panel is the linear fit with

the corresponding 95% CIs (in grey).

Figure 2.

IV Validity

Note. Data from Swedish Coronary Angiography and Angioplasty (SCAAR) pooled across years. The left panel shows

the actual data distribution of the weekly arrival of emergency cases (blue) and the distribution of the predicted weekly

arrival of emergency cases (red) from the estimated Poisson model controlling for hospital and week-by-year fixed ef-

fects. The right panel plots the mixed-model estimated physician-specific random intercepts as a measure of physicians’

underlying preference for radiation (x-axis) on the average weekly share of emergency cases (y-axis) treated by the

corresponding physician.
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Table 2.

Main results

(1) (2) (3)

Panel A. OLS Outcome : Focal radiation output

Peers’ radiation output 0.372
∗∗∗

0.168
∗∗∗

0.171
∗∗∗

(0.014) (0.011) (0.011)

Effect size [19.9%] [9%] [9.1%]

Panel B. First-stage Outcome : Peers’ radiation output

Peer’s total on-call emergency cases 0.031
∗∗∗

0.018
∗∗∗

0.018
∗∗∗

(0.004) (0.003) (0.003)

Montiel-Pflueger F-stats 72.5 35.1 35.2

Panel C. Reduced form Outcome : Focal radiation output

Peer’s total on-call emergency cases 0.025
∗∗∗

0.014
∗∗∗

0.013
∗∗∗

(0.003) (0.002) (0.002)

Panel D. 2SLS : Second-stage Outcome : Focal radiation output

Peers’ radiation output 0.834
∗∗∗

0.804
∗∗∗

0.710
∗∗∗

(0.031) (0.065) (0.065)

Effect size [44.7%] [43%] [38%]

Mean outcome 5.56 5.56 5.56

SD outcome 2.98 2.98 2.98

Specification No control Baseline w/o

Risk-adjusters

Baseline

Anderson-Rubin p-value 0.00 0.00 0.00

Observations 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. Panel A present the OLS estimates, Panel B-D

present the first-stage, reduced form, and second-stage estimates, respectively. Focal doctors and peer’s average radiation output are stan-

dardized.The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05;

*** p<0.01. Standard errors are clustered at unique peer groups level and are in parentheses. Effect size (in brackets) is calculated with respect

to the mean outcome. Baseline model controls for doctors, hospital linear time trend, month-by-year FEs; the focal physician’s emergency

cases in the previous week (t-1); and various risk-adjuster measures : average age of the patients and share of patients with co-morbidities

(diabetes, hypertension, smoking status, past history of infarction/PTCA/bypass).
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Table 3.

Appropriateness of care

Share of patients receiving [...]

Insufficient dosage Appropriate dosage Excessive dosage

(1) (2) (3) (4) (5) (6)

Peers’ radiation output -0.752
∗∗∗

-0.678
∗∗∗

0.403
∗∗∗

0.371
∗∗∗

0.606
∗∗∗

0.533
∗∗∗

(0.114) (0.113) (0.136) (0.135) (0.090) (0.093)

Average cases 6.8 6.8 6.8 6.8 6.8 6.8

Mean outcome 0.353 0.353 0.539 0.539 0.108 0.108

SD outcome 0.312 0.312 0.298 0.298 0.189 0.189

Montiel-Pflueger F-stats 35.1 35.2 35.1 35.2 35.1 35.2

Anderson-Rubin p-value 0.00 0.00 0.00 0.00 0.00 0.00

Risk-adjusters - ✓ - ✓ - ✓

Observations 28,467 28,467 28,467 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcomes are

defined as share of cases receiving the corresponding range of Diagnostic Reference Levels (DRLs) as specified in Section 3. Peer’s average

radiation output is standardized. The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation

(2). Average cases refer to the total (weekly) that the focal physician’s treated. * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors are clustered

at unique peer groups level. Baseline model controls for doctors, hospital linear time trend, month-by-year FEs, and the focal physician’s

emergency cases in the previous week (t-1) and various risk-adjuster measures (patient’s characteristics and co-morbidities).

Table 4.

Treatment intensity

Diagnostic intensity Treatment intensity

Time Complex Segments CABG PTCA Stents

(1) (2) (3) (4) (5) (6)

Peers’ radiation output 0.330
∗∗∗

0.053
∗∗

0.193
∗

-0.007 0.171
∗

0.192
∗

(0.100) (0.027) (0.115) (0.016) (0.102) (0.115)

Mean outcome 554 0.233 0.727 0.090 0.498 0.634

SD outcome 294 0.228 0.520 0.153 0.284 0.547

Montiel-Pflueger F-stats 35.2 35.2 35.2 35.2 35.2 35.2

Anderson-Rubin p-value 0.01 0.04 0.12 0.636 0.12 0.12

Observations 28,467 28,467 28,467 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcomes

are defined as standardized fluoroscopic time (in seconds) (1); ; share of patients diagnosed as ”Complex” (3); standardized weekly number

of segments or the coronary artery treated (3); share of patients recommended for heart bypass surgery (CABG - Coronary Artery Bypass

Graft) (4); share of patients receiving PTCA (5) and standardized number of stents used (5). Peer’s average radiation output is standardized.

The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01.

Standard errors are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal

physician’s emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).
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Table 5.

Quality implication

Restenosis Infarction Revascularization Mortality

(1) (2) (3) (4)

Peers’ radiation output -0.188 -0.380
∗∗∗

-0.280
∗∗

-0.356
∗∗∗

(0.116) (0.129) (0.129) (0.133)

Mean outcome 0.304 0.687 0.900 1.129

SD outcome 1.311 1.945 2.255 2.559

Montiel-Pflueger F-stats 35.1 35.1 35.1 35.1

Anderson-Rubin p-value 0.09 0.00 0.02 0.00

Observations 28,467 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcomes

are (standardized) number of corresponding adverse events occurred within 1-year post intervention date. Restenosis is reduction in artery

diameter post-intervention; Re-infarction is recurrence of clinical signs and symptoms of ischemia in patients with previously diagnosed

of heart attacks; Revascularization is re-intervention following initial interventional procedure given. Peer’s average radiation output is

standardized. The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; **

p<0.05; *** p<0.01. Standard errors are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-

by-year FEs, the focal physician’s emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics

and co-morbidities).
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Table 6.

Heterogeneity analysis

(1) (2) (3) (4) (5) (6) (7)

Female Male Junior Mid Senior Local hospital Academic hospital

Peers’ radiation output 0.357 0.740
∗∗∗

0.602
∗∗∗

0.657
∗∗∗

1.022 0.602
∗∗∗

0.654
∗∗∗

(0.273) (0.081) (0.143) (0.137) (0.746) (0.133) (0.083)

Mean outcome 6.43 5.46 5.72 5.53 5.22 5.55 5.61

SD outcome 3.39 2.91 3.02 2.98 2.81 2.96 3.02

Montiel-Pflueger F-stats 10.4 31.0 22.4 25.7 2.0 17.3 18.7

Anderson-Rubin p-value 0.18 0.00 0.00 0.00 0.06 0.00 0.00

Observations 2,892 25,575 9,192 16,153 3,122 17,565 10,902

Note. . The table presents the 2SLS estimates based on focal doctors’ characteristics. Outcome is focal doctors (standardized) radiation output and the instrumented (standardized) peer’s average radiation

output. The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). Columns (1)-(2) control for peer’s emergency cases at t; Columns (3)-(4) control for focal

emergency cases at t. * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s

emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).
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Figure 3.

Event study

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The graph plots the 2SLS estimates

(solid point) and the corresponding 95% confidence intervals (black lines) and 90% confidence intervals (grey lines) from

the model specification in Equation (4). The model vary the outcome variable at various t (the focal physicians’ radiation
output at various lag and lead). Model controls for (instrumented) current peer exposure, (non-instrumented) past peer

exposures, doctors, hospital linear time trend, month-by-year FEs, the focal physician’s emergency cases in the previous

week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).

Table 7.

Sensitivity analysis

(1) (2) (3) (4)

Peers’ radiation output 0.710
∗∗∗

0.707
∗∗∗

0.693
∗∗∗

0.611
∗∗∗

(0.065) (0.063) (0.069) (0.082)

Mean outcome 5.56 5.56 5.56 5.47

SD outcome 2.98 2.98 2.98 2.65

Montiel-Pflueger F-stats 35.2 36.0 32.0 34.5

Anderson-Rubin p-value 0.000 0.000 0.000 0.000

Specifications Baseline Hospitals volume Own (lagged)

outcome

Excluding outliers

Observations 28,467 28,467 28,467 27,900

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcome is

focal doctors (standardized) radiation output and the instrumented (standardized) peer’s average radiation output. The instrument variable,

peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors

are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s

emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).
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Table 8.

Robustness check : Autocorrelation

(1) (2) (3) (4)

Peers’ radiation output 0.901
∗∗∗

0.802
∗∗∗

0.815
∗∗∗

0.724
∗∗∗

(0.089) (0.086) (0.065) (0.066)

Mean outcome 5.56 5.56 5.56 5.56

SD outcome 2.98 2.98 2.98 2.98

Montiel-Pflueger F-stats 23.7 23.8 35.4 35.5

Anderson-Rubin p-value 0.00 0.00 0.00 0.00

Model w/o Risk-adjusters Baseline w/o Risk-adjusters Baseline

Control Peer’s emergency

cases

Peer’s emergency

cases

Focal’s emergency

cases

Focal’s emergency

cases

Observations 28,467 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcome is

focal doctors (standardized) radiation output and the instrumented (standardized) peer’s average radiation output. The instrument variable,

peer’s total on-call emergency cases are defined in counts as specified in Equation (2). Columns (1)-(2) control for peer’s emergency cases at

t; Columns (3)-(4) control for focal emergency cases at t. * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors are clustered at unique peer groups

level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s emergency cases in the previous week

(t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).

Table 9.

Robustness : Types of cases

Emergency Elective Angiography (CA) PTCA

(1) (2) (3) (4)

Peers’ radiation output 0.480
∗∗∗

0.550
∗∗∗

0.548
∗∗∗

0.529
∗∗∗

(0.126) (0.104) (0.111) (0.079)

Mean outcome 6.33 5.23 3.46 7.61

SD outcome 3.97 2.98 2.08 3.93

Montiel-Pflueger F-stats 21.3 34.9 37.7 34.9

Anderson-Rubin p-value 0.00 0.00 0.00 0.00

Observations 17,983 25,898 25,007 25,455

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates based on types

of cases treated by the focal doctors. Outcome is focal doctors’ (standardized) radiation output across case types (Emergency and Elective)

and procedures (angiography and PTCA). Peers’ radiation output is standardized. The instrument variable, peer’s total on-call emergency

cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors are clustered at unique peer groups

level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s emergency cases in the previous week

(t-1), and various risk-adjuster measures such as patient’s characteristics and co-morbidities.
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Appendix A Coronary Angiography Procedure

The coronary arteries provide the pathway for blood to flow and supply oxygen to the heart

muscle (myocardium). In some cases, these arteries can become narrowed or blocked by fatty

deposits called plaque, leading to conditions such as coronary artery disease (CAD). In these

conditions, the passage for blood flow is restricted, and consequently, the heart muscle doesn’t

receive enough oxygen, leading to permanent damage. A coronary angiography (CA) is a

diagnostic procedure that allows doctors to examine the coronary arteries, especially in the

event of a heart attack. Its primary use is to detect blockages and map areas of narrowing

(stenosis) in these arteries, which helps cardiologists determine the appropriate treatment

(e.g., ballooning or stents) to maintain patency of the affected blood vessels.

There are preparation steps to consider before undergoing the procedure. In a non-emergency

situation, the patient typically has a consultation with their doctor and undergoes some tests,

such as blood work, an electrocardiogram (ECG), or a chest x-ray. The patient is also advised

to avoid eating or drinking for 6 to 8 hours before the procedure. If the patient takes medica-

tions like blood thinners (e.g., warfarin or aspirin), they may need to temporarily stop these

under their doctor’s guidance. The medical team will also check for any allergies to iodine or

contrast dye, as this dye is crucial for visualizing the arteries during the angiography.

A coronary angiography is generally a safe procedure, but as with any medical interven-

tion, there are potential risks. Common side effects include bruising or bleeding at the access

site, as well as mild discomfort. Rarely, more serious complications like allergic reactions to

the dye, arrhythmias (irregular heartbeats), or damage to the blood vessels may occur. In ex-

tremely rare cases, a heart attack or stroke can happen during the procedure. However, for

most patients, the benefits outweigh these risks.

The angiography typically involves the following steps:

1. Locating and accessing the artery: The procedure begins with the cardiologist selecting

an access point to reach the coronary arteries. The two common access points are the

radial artery (located in the forearm) or the femoral artery (in the groin). The radial

approach is increasingly favored due to its lower complication rates and quicker recov-

ery; however, it requires more precision than the femoral artery as it is smaller. Patients

are given a local anesthetic around the puncture site, and the cardiologist inserts a thin

tube called a catheter into the artery using a needle.

2. Guiding the catheter to the heart: Once the catheter is in the artery, the cardiologist

carefully guides it up to the coronary arteries. The movement of the catheter is tracked

using continuous x-ray imaging called fluoroscopy, which helps the clinician navigate

the blood vessels safely. Radiation exposure occurs throughout the fluoroscopy pro-

cedure. The catheter is steered through the blood vessels toward the heart, similar to
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threading a wire through a winding tube.

3. Use of contrast agent: Once the catheter reaches the coronary arteries, a contrast dye or

contrast agent is injected through the catheter. This dye contains iodine, which makes

the coronary arteries visible on x-ray images. The dye allows the cardiologist to see how

blood is flowing through the arteries and to detect any areas of narrowing or blockage.

4. Capturing x-ray images: As the dye moves through the arteries, x-ray images are taken

in real time. The images provide a clear view of the coronary arteries, showing whether

the blood flow is normal or obstructed. If a significant blockage (usually more than 70%

narrowing) is found, the cardiologist may perform further treatment, such as PTCA

(Percutaneous Transluminal Coronary Angioplasty), by inserting a balloon or stent to

open the artery. In complex cases, a coronary bypass surgery may be recommended.

The procedure usually takes 30-45 minutes to complete. Once the angiography is finished,

the catheter is carefully removed, and pressure is applied to the access site to prevent bleeding.

If the procedure was done via the radial artery, the patient can often sit up and walk shortly

afterward. For those with femoral access, a few hours of lying flat may be required to ensure

the artery heals properly. Most patients are discharged on the same day but may be advised to

avoid heavy lifting or strenuous activities for a few days. Patients are prescribed appropriate

medications and will be re-evaluated in the following week to monitor improvements and

check for any side effects.
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Appendix B Calculation of Effective dose (mSv)

Dose Area Product (DAP) is a measure of the total radiation dose delivered to a patient during

radiological procedures (including Coronary Angiography), taking account of both the dose

and the area exposed to the radiation (Li et al., 2020). Intuitively, DAP represents the total

radiation dose multiplied by the exposed area during a radiological procedure. The common

unit of measurements are Gray centimetres squared (Gy.cm2) or milligray centimetres squared

(mGy.cm2).

Effective dose, on the other hand, represents the overall risk of radiation exposure by

accounting the type of radiation and sensitivity of different body tissues exposed to ionizing

radiation. DAP is informative to the overall radiation is absorved per unit mass, Effective dose

accounts for how vulnerable certain tissues to radiation-induced damage. For instance, breast,

lungs, and bone marrow are relatively more susceptible to radiation damage. In other words,

Effective dose is a risk-adjusted measure of ionizing radiation.

Effective dose is important to determine the stochastic risk (i.e. risk of cancer), effects that

occur randomly yet is positively correlated with the amount of radiation dose. The higher

the effective dose, the risk of developing stochastic effects is increased. There is no known

‘threshold’ exists below which the risk is zero, as even small doses pose a small probability of

stochastic effects. Deterministic risk from ionizing radiation, such as skin burns, on the other

hand is more relevant for DAP as it measures directly the absorbed radiation dose to the body

tissues. As such, there is a ‘threshold’ in which the effects would occur if it exceeded a specific

range of dose.

Our data records DAP in µGray meters squared (µGy.m2). We first convert this measure to

the typical DAP unit, in Gray centimeters squared (Gy.cm2) simply by dividing 100 (as detailed

in the website https://www.dosewizard.com/2011/06/dap-converter.html). We then convert

DAP into Effective dose, measured in millisieverts (mSv) by multiplying DAP with a dose

conversion factors (derived from studies and/or clinical guidelines for specific procedures).

We assume dose conversion factor for Coronary Angiography is 0.1 mSv/Gy.cm2. Formally,

the conversion steps is the following :

1. Convert radiation dose to DAP (µGy.m2 to Gy.cm2)

Radiation dose (µGy.m2)/100 = DAP (Gy.cm2)

2. DAP to Effective dose

Effective Dose (mSv)=DAP (Gy.cm2)×Conversion Factor (mSv/Gy.cm2)

Taking an example of the average radiation dose of 5,500 µGy.m2, this means that the

Effective dose is simply 5,500/1,000 = 5.5 mSv
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Appendix C Additional Figures and Tables

Table C.1.

Conditional random assignment test

Group No. of groups T-statistics

Observable Non-observable

Hospital-by-week 6,002 1.03E-07 -8.14E-08
Hospital-by-month 1,917 5.32E-08 2.87E-09
Hospital-by-quarter 663 -0.00330 0.00622

Note. Table presents the t-statistics from the random assignment test of peer groups following (Jochmans, 2023). The method builds on

a regression approach similar to (Sacerdote, 2011), that checks for correlations between individual and peer’s characteristics, conditional

on the group fixed (at the urn level). If correlations exist, it then suggests a non-random assignment and hence the null hypothesis in this

test is random assignment. The test are based on both observables (age, gender) and unobservables (the estimated random intercepts from

mixed-model as shown in Figure 2, right panel. The independent variable is the average observable and unobservables characteristics of the

peers (age and the average preference for radiation). The test controls for fixed effects at the urn level (i.e. peer group).

Table C.2.

IV Monotonicity

Sex Age group

Male Female Junior Mid Senior

(1) (2) (3) (4) (5)

Peer’s total on-call emergency cases 0.017
∗∗∗

0.020
∗∗∗

0.017
∗∗∗

0.017
∗∗∗

0.009
∗

(0.002) (0.005) (0.002) (0.002) (0.005)

Observations 25,575 2,892 9,192 16,153 3,122

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the OLS estimates from the

first-stage specification in Equation (3) across sub-groups of the focal doctors. Outcome variable is (standardized) average peer’s radiation

dose. The IV is Peer’s total on-call emergency cases and this is defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; ***

p<0.01. Standard errors are clustered at unique peer group level. Model controls for doctors, hospital linear time trend, month-by-year FEs,

the focal physician’s emergency cases in the previous week (t-1), and various risk-adjuster measures such as patient’s characteristics and

co-morbidities.
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Table C.3.

Treatment intensity : Local hospitals

Diagnostic intensity Treatment intensity

Time Complex Segments CABG PTCA Stents

(1) (2) (3) (4) (5) (6)

Peers’ radiation output 0.459
∗∗∗

0.038 0.317
∗

-0.021 0.359
∗∗

0.377
∗∗

(0.150) (0.034) (0.180) (0.023) (0.168) (0.183)

Mean outcome 546.970 0.228 0.717 0.089 0.484 0.619

SD outcome 283.250 0.218 0.503 0.150 0.270 0.524

Montiel-Pflueger F-stats 17.3 17.3 17.3 17.3 17.3 17.3

Anderson-Rubin p-value 0.00 0.26 0.09 0.34 0.04 0.04

Observations 17,565 17,565 17,565 17,565 17,565 17,565

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcomes are

defined as standardized fluoroscopic time (1); ; share of patients diagnosed as ”Complex” (3); standardized weekly number of segments or

the coronary artery treated (3); share of patients recommended for heart bypass surgery (CABG - Coronary Artery Bypass Graft) (4); share

of patients receiving PTCA (5) and standardized number of stents used (5). Peer’s average radiation output is standardized. The instrument

variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors

are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s

emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).

Table C.4.

Treatment intensity : Academic hospitals

Diagnostic intensity Treatment intensity

Time Complex Segments CABG PTCA Stents

(1) (2) (3) (4) (5) (6)

Peers’ radiation output 0.348
∗∗

0.067
∗

0.237 -0.005 0.141 0.179

(0.136) (0.040) (0.154) (0.022) (0.139) (0.162)

Mean outcome 564.217 0.242 0.743 0.09 0.520 0.659

SD outcome 310.015 0.244 0.546 0.158 0.304 0.581

Montiel-Pflueger F-stats 18.7 18.7 18.7 18.7 18.7 18.7

Anderson-Rubin p-value 0.05 0.09 0.17 0.82 0.35 0.31

Observations 10,902 10,902 10,902 10,902 10,902 10,902

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcomes are

defined as standardized fluoroscopic time (1); ; share of patients diagnosed as ”Complex” (3); standardized weekly number of segments or

the coronary artery treated (3); share of patients recommended for heart bypass surgery (CABG - Coronary Artery Bypass Graft) (4); share

of patients receiving PTCA (5) and standardized number of stents used (5). Peer’s average radiation output is standardized. The instrument

variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors

are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s

emergency cases in the previous week (t-1), and various risk-adjuster measures (patient’s characteristics and co-morbidities).
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Table C.5.

Robustness check : Various FEs combinations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Peers’ radiation output 0.710
∗∗∗

0.722
∗∗∗

0.694
∗∗∗

0.703
∗∗∗

0.677
∗∗∗

0.686
∗∗∗

0.696
∗∗∗

0.862
∗∗∗

0.805
∗∗∗

0.724
∗∗∗

(0.065) (0.068) (0.061) (0.064) (0.061) (0.064) (0.062) (0.113) (0.058) (0.070)

Mean outcome 5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56 5.56

SD outcome 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98 2.98

Montiel-Pflueger F-stats 35.2 32.9 36.9 34.6 36.7 34.5 36.3 36.7 38.7 33.5

Anderson-Rubin p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Doctor’s FE ✓ ✓ ✓ ✓ - - - ✓ - ✓
Hospital linear trend FE ✓ ✓ - - - - ✓ - - -

Hospital polynomial trend FE - - - - - - - - - ✓
Month-by-year FE ✓ - ✓ - ✓ - ✓ ✓ ✓ ✓
Week-by-year FE - ✓ - ✓ - ✓ - - - -

Doctor linear trend FE - - - - ✓ ✓ ✓ - - -

Hospital FE - - ✓ ✓ ✓ ✓ - - ✓ -

Observations 28,467 28,467 28,467 2,8467 28,467 28,467 28,467 28,467 28,467 28,467

Note. Own calculations based on the SCAAR registry pooled across years 2008–2013. The table presents the 2SLS estimates. Outcome is focal doctors (standardized) radiation output and the instrumented

(standardized) peer’s average radiation output. The instrument variable, peer’s total on-call emergency cases are defined in counts as specified in Equation (2). * p <0.1 ; ** p<0.05; *** p<0.01. Standard errors

are clustered at unique peer groups level. Model controls for doctors, hospital linear time trend, month-by-year FEs, the focal physician’s emergency cases in the previous week (t-1), and various risk-adjuster
measures such as patient’s characteristics and co-morbidities.
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Figure C.1.

Bounding exercise

Note. The figure plots the 2SLS estimates of the peers’ average radiation output on focal doctors’ radiation

output across a range bounds for the instrument to impact the focal doctors directly (i.e. relaxing the

exclusion criterion) following (Conley et al., 2012). Range of the bounds (direct reduced form effects) is

guided by the reduced form estimates on Table 2.
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